The study aims to predict Total Dissolved Solids (TDS) as a water quality indicator parameter at spatial and temporal distribution of the Tigris River, Iraq by using Artificial Neural Network (ANN) model. This study was conducted on this river between Mosul and Amarah in Iraq on five positions stretching along the river for the period from 2001to 2011. In the ANNs model calibration, a computer program of multiple linear regressions is used to obtain a set of coefficient for a linear model. The input parameters of the ANNs model were the discharge of the Tigris River, the year, the month and the distance of the sampling stations from upstream of the river. The sensitivity analysis indicated that the distance and discharge have the most significant affect on the predicted TDS concentrations. The results showed that a network with (8) hidden neurons was highly accurate in predicting TDS concentration. The correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE) between measured data and model outputs were calculated as 0.975, 113.9 and 11.51%, respectively for testing data sets. Comparisons between final results of ANNs and multiple linear regressions (MLR) showed that the ANNs model could be successfully applied and provides high accuracy to predict TDS concentrations as a water quality parameter.
Existing leachate models over–or underestimates leachate generation by up to three orders of magnitude. Practical experiments show that channeled flow in waste leads to rapid discharge of large leachate volumes and heterogeneous moisture distribution. In order to more accurately predict leachate generation, leachate models must be improved. To predict moisture movement through waste, the two–domain PREFLO, are tested. Experimental waste and leachate flow values are compared with model predictions. When calibrated with experimental parameters, the PREFLO provides estimates of breakthrough time. In the short term, field capacity has to be reduced to 0.12 and effective storage and hydraulic conductivity of the waste must be increased to
... Show MoreFive heavy metals, namely Cd, Cu, Fe, Mn, and Pb in the surface water and through the water column were studied at 10 selected stations in the Razzazah lake and Karbala drainage canal for the period between November 1990 to October 1991*. pH and total hardness were also measured. Lead was found to be the highest in concentration as overall average values, followed by an manganese, iron, copper then cadmium at the surface as well as along the water column. All the studied metals were below or close to the maximum allowed limits of Iraqi standards for inland water. The spatial and seasonal variations were discussed.
Various simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is
... Show MoreThe removal of cadmium ions from simulated groundwater by zeolite permeable reactive barrier was investigated. Batch tests have been performed to characterize the equilibrium sorption properties of the zeolite in cadmium-containing aqueous solutions. Many operating parameters such as contact time, initial pH of solution, initial concentration, resin dosage and agitation speed were investigated. The best values of these parameters that will achieved removal efficiency of cadmium (=99.5%) were 60 min, 6.5, 50 mg/L, 0.25 g/100 ml and 270 rpm respectively. A 1D explicit finite difference model has been developed to describe pollutant transport within a groundwater taking the pollutant sorption on the permeable reactive barrier (PRB), which i
... Show MoreVarious simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is
... Show MoreThe present study investigated the total content of phenolic compounds, antioxidant and antimicrobial activities of water extracts oat (Avena sativa) and basil (Ocimum basilicum), medicinal plants. The Folin-ciocalteu reagent assay was used to estimate the total phenolic content of plants extract. The antioxidant capacity of the plants extract was tested by ferric reducing/antioxidant power Assay (FRAP) and ferric reducing scavenging activity using DPPH method, and the antimicrobial activity was measured against [Staphylococcus epidermidis; Staphylococcus aureus; Proteus spp.; Klebsiella spp.; Escherichia coli; Candida albicans] as tester strains. The total phenolic content of Avena sativa and Ocimum basilicum extracts revealed that the
... Show MoreThe majority of real-world problems involve not only finding the optimal solution, but also this solution must satisfy one or more constraints. Differential evolution (DE) algorithm with constraints handling has been proposed to solve one of the most fundamental problems in cellular network design. This proposed method has been applied to solve the radio network planning (RNP) in the forthcoming 5G Long Term Evolution (5G LTE) wireless cellular network, that satisfies both deployment cost and energy savings by reducing the number of deployed micro base stations (BSs) in an area of interest. Practically, this has been implemented using constrained strategy that must guarantee good coverage for the users as well. Three differential evolution
... Show More