Preferred Language
Articles
/
joe-406
Compression Index and Compression Ratio Prediction by Artificial Neural Networks
...Show More Authors

Information about soil consolidation is essential in geotechnical design. Because of the time and expense involved in performing consolidation tests, equations are required to estimate compression index from soil index properties. Although many empirical equations concerning soil properties have been proposed, such equations may not be appropriate for local situations. The aim of this study is to investigate the consolidation and physical properties of the cohesive soil. Artificial Neural Network (ANN) has been adapted in this investigation to predict the compression index and compression ratio using basic index properties. One hundred and ninety five consolidation results for soils tested at different construction sites in Baghdad city were used. 70% of these results were used to train the prediction ANN models and the rest were equally divided to test and validate the ANN models. The performance of the developed models was examined using the correlation coefficient R. The final models have demonstrated that the ANN has capability for acceptable prediction of compression index and compression ratio. Two equations were proposed to estimate compression index using the connecting weights algorithm, and good agreements with test results were achieved.

 

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Aug 01 2021
Journal Name
Journal Of Composites For Construction
Prediction of Concrete Cover Separation in Reinforced Concrete Beams Strengthened with FRP
...Show More Authors

View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Evaluation of a fire safety risk prediction model for an existing building
...Show More Authors
Abstract<p>Fire is one of the most critical risks devastating to human life and property. Therefore, humans make different efforts to deal with fire hazards. Many techniques have been developed to assess fire safety risks. One of these methods is to predict the outbreak of a fire in buildings, and although it is hard to predict when a fire will start, it is critical to do so to safeguard human life and property. This research deals with evaluating the safety risks of the existing building in the city of Samawah/Iraq and determining the appropriateness of these buildings in terms of safety from fire hazards. Twelve parameters are certified based on the National Fire Protection Association (NFPA20</p> ... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Nov 29 2018
Journal Name
Al-khwarizmi Engineering Journal
Surface Roughness Prediction for Steel 304 In Edm Using Response Graph Modeling
...Show More Authors

Electrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Proposition of New Ensemble Data-Intelligence Models for Surface Water Quality Prediction
...Show More Authors

View Publication
Scopus (77)
Crossref (75)
Scopus Clarivate Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Engineering
Semi-Analytical Prediction of Flank Tool Wear in Orthogonal Cutting of Aluminum
...Show More Authors

This study aims to model the flank wear prediction equation in metal cutting, depending on the workpiece material properties and almost cutting conditions. A new method of energy transferred solution between the cutting tool and workpiece was introduced through the flow stress of chip formation by using the Johnson-Cook model. To investigate this model, an orthogonal cutting test coupled with finite element analysis was carried out to solve this model and finding a wear coefficient of cutting 6061-T6 aluminum and the given carbide tool.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Journal Of Composites For Construction
Prediction of Concrete Cover Separation in Reinforced Concrete Beams Strengthened with FRP
...Show More Authors

Scopus (17)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Fri Sep 30 2011
Journal Name
Iraqi Journal Of Science
Using the band ratio classification method to detect the regions that need to remove sedimentation in Tigris River
...Show More Authors

LandSat Satellite ETM+ image have been analyzed to detect the different depths of regions inside the Tigris river in order to detect the regions that need to remove sedimentation in Baghdad in Iraq Country. The scene consisted of six bands (without the thermal band), It was captured in March ٢٠٠١. The variance in depth is determined by applying the rationing technique on the bands ٣ and ٥. GIS ٩. ١ program is used to apply the rationing technique and determined the results.

View Publication
Publication Date
Tue Jan 01 2019
Journal Name
Indian Journal Of Ecology
Effectiveness of oxidation enzymes in the ratio of gluten to wheat bread via different treatments of weeds control
...Show More Authors

Scopus (11)
Scopus
Publication Date
Fri Apr 28 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Design Optimal Neural Network for Solving Unsteady State Confined Aquifer Problem
...Show More Authors

View Publication Preview PDF
Scopus (7)
Crossref (1)
Scopus Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Offline Signature Biometric Verification with Length Normalization using Convolution Neural Network
...Show More Authors

Offline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref