Preferred Language
Articles
/
joe-406
Compression Index and Compression Ratio Prediction by Artificial Neural Networks
...Show More Authors

Information about soil consolidation is essential in geotechnical design. Because of the time and expense involved in performing consolidation tests, equations are required to estimate compression index from soil index properties. Although many empirical equations concerning soil properties have been proposed, such equations may not be appropriate for local situations. The aim of this study is to investigate the consolidation and physical properties of the cohesive soil. Artificial Neural Network (ANN) has been adapted in this investigation to predict the compression index and compression ratio using basic index properties. One hundred and ninety five consolidation results for soils tested at different construction sites in Baghdad city were used. 70% of these results were used to train the prediction ANN models and the rest were equally divided to test and validate the ANN models. The performance of the developed models was examined using the correlation coefficient R. The final models have demonstrated that the ANN has capability for acceptable prediction of compression index and compression ratio. Two equations were proposed to estimate compression index using the connecting weights algorithm, and good agreements with test results were achieved.

 

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jul 24 2020
Journal Name
Al-kindy College Medical Journal
Serum Ferritin and Body Mass Index in Chronic Telogen Effluvium among women attending the main dermatological outpatient clinics in BaghdadSerum Ferritin and Body Mass Index in Chronic Telogen Effluvium among women attending the main dermatological
...Show More Authors

Background: Hair loss is a common distressing disease and challenging problem for many dermatologist. Telogen effluvium is the most common hair loss disease in which nutritional deficiencies may precipitate the disease through their effect on hair structure and growth.

Study Aim : Validating role of serum ferritin level and body mass index in Chronic Telogen Effluvium and analyzing association between these factors with socioeconomic, demographic, gynecological factors and weight loss effect. Establishing a nutritional preventive advice to improve treatment successfulness and decrease the disease occurrence.

             

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 27 2022
Journal Name
2022 3rd Information Technology To Enhance E-learning And Other Application (it-ela)
Diabetes Prediction Using Machine Learning
...Show More Authors

Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att

... Show More
View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Wed Sep 01 2021
Journal Name
International Journal Of Nonlinear Analysis And Application
Suggested methods for prediction using semiparametric regression function
...Show More Authors

Ferritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m

... Show More
Preview PDF
Scopus
Publication Date
Mon Jul 01 2024
Journal Name
Journal Of Biomedical Sciences
Effect of Age and Body Mass Index on some Physiological Parameters in Women with Thyroid Disorders
...Show More Authors

Age and BMI may be used to diagnosis of thyroid autoimmune disease. One hundred Iraqi women with age ranged from 18 to 60 years participate in this research, 50 of them were hypothyroidism patients, 30 were hyperthyroidism patients and the other 20 were euthyroidism served as controls. Blood samples were collected from the studied subjects to determine thyroid profile [free triiodothyronine (FT3), free tetraiodothyronine (FT4) and thyroid stimulating hormone (TSH)], thyroid antibodies [anti-thyroid peroxidase (anti-TPO), anti-thyroglobulin (anti-Tg), and anti-thyroid stimulating hormone receptor (anti-TSHR)], and levels of vitamin D (vit D), calcium (Ca), and phosphorus (P) using different analysis techniques. When the effect of age

... Show More
Publication Date
Wed Jan 01 2025
Journal Name
Lecture Notes In Networks And Systems
Diagnosis of Diabetes Using Artificial Intelligence Programs
...Show More Authors

Scientific development has occupied a prominent place in the field of diagnosis, far from traditional procedures. Scientific progress and the development of cities have imposed diseases that have spread due to this development, perhaps the most prominent of which is diabetes for accurate diagnosis without examining blood samples and using image analysis by comparing two images of the affected person for no less than a period. Less than ten years ago they used artificial intelligence programs to analyze and prove the validity of this study by collecting samples of infected people and healthy people using one of the Python program libraries, which is (Open-CV) specialized in measuring changes to the human face, through which we can infer the

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Oct 04 2023
Journal Name
Environmental Progress & Sustainable Energy
Removal of <scp>E133</scp> brilliant blue dye from artificial wastewater by electrocoagulation using cans waste as electrodes
...Show More Authors
Abstract<p>Solid‐waste management, particularly of aluminum (Al), is a challenge that is being confronted around the world. Therefore, it is valuable to explore methods that can minimize the exploitation of natural assets, such as recycling. In this study, using hazardous Al waste as the main electrodes in the electrocoagulation (EC) process for dye removal from wastewater was discussed. The EC process is considered to be one of the most efficient, promising, and cost‐effective ways of handling various toxic effluents. The effect of current density (10, 20, and 30 mA/cm<sup>2</sup>), electrolyte concentration (1 and 2 g/L), and initial concentration of Brilliant Blue dye (15 and 30 mg/L) on </p> ... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Physics
Calculated the diffuse and direct parts of global solar radiation in Baghdad city for the period (1983-2005) depending on clearness index by applying the two world models of Liu -Jordan
...Show More Authors

In this paper solar radiation was studied over a region of Baghdad (Latitude 33.3o and longitude 44.4o). The two parts of global solar radiation: diffuse and direct solar radiation were estimated depending on the clearance index of measured data (Average Monthly mean global solar radiation). Metrological data of measured (average monthly mean diffuse and direct solar radiation) were used to comparison the results and show the agreement between them. Results are determined by applying Liu and Jordan two models (1960). Excel 2007program is used in calculation, graphics and comparison the results.

View Publication Preview PDF
Crossref
Publication Date
Mon Feb 18 2019
Journal Name
Iraqi Journal Of Physics
Drought assessment in Iraq using analysis of Standardized precipitation index (SPI)
...Show More Authors

The Present study investigated the drought in Iraq, by using the rainfall data which obtained from 39 meteorological stations for the past 30 years (1980-2010). The drought coefficient calculated on basis of the standard precipitation index (SPI) and then characteristics of drought magnitude, duration and intensity were analyzed. The correlation and regression between magnitude and duration of drought were obtained according the (SPI) index. The result shows that drought magnitude values were greater in the northeast region of Iraq. 

View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Optimized Zero and First Order Design of Micro Geodetic Networks
...Show More Authors

Precision is one of the main elements that control the quality of a geodetic network, which defines as the measure of the network efficiency in propagation of random errors. This research aims to solve ZOD and FOD problems for a geodetic network using Rosenbrock Method to optimize the geodetic networks by using MATLAB programming language, to find the optimal design of geodetic network with high precision. ZOD problem was applied to a case study network consists of 19 points and 58 designed distances with a priori deviation equal to 5mm, to determine the best points in the network to consider as control points. The results showed that P55 and P73 having the minimum ellipse of error and considered as control points. FOD problem was applie

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Apr 11 2011
Journal Name
Icgst
Employing Neural Network and Naive Bayesian Classifier in Mining Data for Car Evaluation
...Show More Authors

In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.