Preferred Language
Articles
/
joe-406
Compression Index and Compression Ratio Prediction by Artificial Neural Networks
...Show More Authors

Information about soil consolidation is essential in geotechnical design. Because of the time and expense involved in performing consolidation tests, equations are required to estimate compression index from soil index properties. Although many empirical equations concerning soil properties have been proposed, such equations may not be appropriate for local situations. The aim of this study is to investigate the consolidation and physical properties of the cohesive soil. Artificial Neural Network (ANN) has been adapted in this investigation to predict the compression index and compression ratio using basic index properties. One hundred and ninety five consolidation results for soils tested at different construction sites in Baghdad city were used. 70% of these results were used to train the prediction ANN models and the rest were equally divided to test and validate the ANN models. The performance of the developed models was examined using the correlation coefficient R. The final models have demonstrated that the ANN has capability for acceptable prediction of compression index and compression ratio. Two equations were proposed to estimate compression index using the connecting weights algorithm, and good agreements with test results were achieved.

 

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Aug 30 2025
Journal Name
Iraqi Journal Of Science
Improving the Performance and Finding Bitmap of the Compression Method Using Weber's law
...Show More Authors

Image compression is a suitable technique to reduce the storage space of an image, increase the area of storage in the device, and speed up the transmission process. In this paper, a new idea for image compression is proposed to improve the performance of the Absolute Moment Block Truncation Coding (AMBTC) method depending on Weber's law condition to distinguish uniform blocks (i.e., low and constant details blocks) from non-uniform blocks in original images. Then, all elements in the bitmap of each uniform block are represented by zero. After that, the lossless method, which is Run Length method, is used for compressing the bits more, which represent the bitmap of these uniform blocks. Via this simple idea, the result is improving

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Journal Of Southwest Jiaotong University
The Arithmetic Coding and Hybrid Discrete Wavelet and Cosine Transform Approaches in Image Compression
...Show More Authors

Image compression is one of the data compression types applied to digital images in order to reduce their high cost for storage and/or transmission. Image compression algorithms may take the benefit of visual sensitivity and statistical properties of image data to deliver superior results in comparison with generic data compression schemes, which are used for other digital data. In the first approach, the input image is divided into blocks, each of which is 16 x 16, 32 x 32, or 64 x 64 pixels. The blocks are converted first into a string; then, encoded by using a lossless and dictionary-based algorithm known as arithmetic coding. The more occurrence of the pixels values is codded in few bits compare with pixel values of less occurre

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Sun Mar 08 2015
Journal Name
All Days
Distribution of New Horizontal Wells by the Use of Artificial Neural Network Algorithm
...Show More Authors
Abstract<p>It is an established fact that substantial amounts of oil usually remain in a reservoir after primary and secondary processes. Therefore; there is an ongoing effort to sweep that remaining oil. Field optimization includes many techniques. Horizontal wells are one of the most motivating factors for field optimization. The selection of new horizontal wells must be accompanied with the right selection of the well locations. However, modeling horizontal well locations by a trial and error method is a time consuming method. Therefore; a method of Artificial Neural Network (ANN) has been employed which helps to predict the optimum performance via proposed new wells locations by incorporatin</p> ... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Thu Nov 29 2018
Journal Name
Iraqi Journal Of Science
Application of WDR Technique with different Wavelet Codecs for Image Compression
...Show More Authors

FG Mohammed, HM Al-Dabbas, Iraqi journal of science, 2018 - Cited by 6

View Publication
Scopus (10)
Scopus
Publication Date
Sun May 01 2016
Journal Name
International Journal Of Computer Applications
Lossless Image Compression using Adaptive Predictive Coding of Selected Seed Values
...Show More Authors

Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Small Binary Codebook Design for Image Compression Depending on Rotating Blocks
...Show More Authors

     The searching process using a binary codebook of combined Block Truncation Coding (BTC) method and Vector Quantization (VQ), i.e. a full codebook search for each input image vector to find the best matched code word in the codebook, requires a long time.   Therefore, in this paper, after designing a small binary codebook, we adopted a new method by rotating each binary code word in this codebook into 900 to 2700 step 900 directions. Then, we systematized each code word depending on its angle  to involve four types of binary code books (i.e. Pour when , Flat when  , Vertical when, or Zigzag). The proposed scheme was used for decreasing the time of the coding procedure, with very small distortion per block, by designing s

... Show More
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Comparative Study of Performance and Emission Characteristics between Spark Ignition Engine and Homogeneous Charge Compression Ignition Engine (HCCI)
...Show More Authors

Many researchers consider Homogeneous Charge Compression Ignition (HCCI) engine mode as a promising alternative to combustion in Spark Ignition and Compression Ignition Engines. The HCCI engine runs on lean mixtures of fuel and air, and the combustion is produced from the fuel autoignition instead of ignited by a spark. This combustion mode was investigated in this paper. A variable compression ratio, spark ignition engine type TD110 was used in the experiments. The tested fuel was Iraqi conventional gasoline (ON=82).

The results showed that HCCI engine can run in very lean equivalence ratios. The brake specific fuel consumption was reduced about 28% compared with a spark ignition engine. The experimental tests showed that the em

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
On Training Of Feed Forward Neural Networks
...Show More Authors

In this paper we describe several different training algorithms for feed forward neural networks(FFNN). In all of these algorithms we use the gradient of the performance function, energy function, to determine how to adjust the weights such that the performance function is minimized, where the back propagation algorithm has been used to increase the speed of training. The above algorithms have a variety of different computation and thus different type of form of search direction and storage requirements, however non of the above algorithms has a global properties which suited to all problems.

View Publication Preview PDF
Publication Date
Sun Jul 01 2018
Journal Name
International Journal Of Engineering Research And Management
The first and Second Order Polynomial Models with Double Scalar Quantization for Image Compression
...Show More Authors

Publication Date
Fri Sep 01 2017
Journal Name
International Journal Of Engineering Research And Advanced Technology
. Medical Image Compression using Hybrid Technique of Wavelet Transformation and Seed Selective Predictive Method
...Show More Authors