Preferred Language
Articles
/
joe-371
Influence of Internal Sulfate Attack on Some Properties of High Strength Concrete
...Show More Authors

One of the most important problems that faces the concrete industry in Iraq is the deterioration due to internal sulfate attack , since it  reduces the compressive strength and increases the expansion of concrete. Consequently, the concrete structure may be damage .The effects of total and total effective sulfate contents on high strength concrete (HSC) have been studied in the present study.

The research studied the effect of sulfate content in cement , sand and gravel , as well as comparing  the total sulfate content with the total effective SO3 content. Materials used were divided into two groups of SO3 in cement ,three groups of SO3 in sand ,and two groups of SO3 in gravel.

The results show that considering the total effective sulfate content is better than the total content of sulfates since the effect of sulfate in each constituent of concrete, depends on it's granular size .The smaller the particle size of the material the more effective is the sulfate in it. Therefore, it is recommended to follow the Iraqi specification for total effective sulfate content, because it gives more flexibility to the use of sand and gravel with higher sulfate content.

The results of compressive strength at 90-days show that the effect of total effective SO3 content of ( 2.647% , 2.992% , 3.424% ) that correspond to total sulfate of ( 3.778%, 3.294%, 4.528%)  decrease the compressive strength by (7.53%, 11.44%, 14.59%) respectively.

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Engineering
Impact of Sulfate in the Sand on the Compressive Strength of Metakaolin-Based Geopolymer Mortar
...Show More Authors

The advancement of cement alternatives in the construction materials industry is fundamental to sustainable development. Geopolymer is the optimal substitute for ordinary Portland cement, which produces 80% less CO2 emissions than ordinary Portland cement. Metakaolin was used as one of the raw materials in the geopolymerization process. This research examines the influence of three different percentages of sulfate (0.00038, 1.532, and 16.24) % in sand per molarity of NaOH on the compressive strength of metakaolin-based geopolymer mortar (MK-GPM). Samples were prepared with two different molarities (8M and 12M) and cured at room temperature. The best compressive strength value (56.98MPa) was recorded with 12M w

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Engineering
Effect of Transverse Internal Ribs on Shear Strength Evaluation of Hollow RC Beams
...Show More Authors

This paper is devoted to investigate experimentally and theoretically the structural behavior of reinforced concrete hollow beams which have internal transverse ribs under effect of shear. The number of the internal ribs is the major variable adopted in this research, while, the other variables are kept constant for all tested specimens. The experimental part includes poured and test of four (200x300x1200mm) beam specimens, three of these specimens were hollow with different locations of internal ribs and one of them was solid. The experimental results indicated that the shear strength are increased (33%) to (60%) for beams containing internal ribs in comparison with reference beam. Also, the change of beam state from ho

... Show More
View Publication Preview PDF
Publication Date
Fri Oct 01 2021
Journal Name
Journal Of Engineering
Influence of Using Various Percentages of Slag on Mechanical Properties of Fly Ash-based Geopolymer Concrete
...Show More Authors

In order to implement the concept of sustainability in the field of construction, it is necessary to find an alternative to the materials that cause pollution by manufacturing, the most important of which is cement. Because factory wastes provide siliceous and aluminous materials and contain calcium such as fly ash and slag that are used in the production of high-strength geopolymer concrete with specifications similar to ordinary concrete, it was necessary for developing this type of concrete that is helping to reduce CO2 (dioxide carbon) in the atmosphere. Therefore, the aim of this study was to study the influence of incorporating various percentages of slag as a replacement for fly ash and the effect of sl

... Show More
View Publication Preview PDF
Crossref (10)
Crossref
Publication Date
Mon Jun 27 2022
Journal Name
Materials
Flexural Performance of Encased Pultruded GFRP I-Beam with High Strength Concrete under Static Loading
...Show More Authors

There is an interesting potential for the use of GFRP-pultruded profiles in hybrid GFRP-concrete structural elements, either for new constructions or for the rehabilitation of existing structures. This paper provides experimental and numerical investigations on the flexural performance of reinforced concrete (RC) specimens composite with encased pultruded GFRP I-sections. Five simply supported composite beams were tested in this experimental program to investigate the static flexural behavior of encased GFRP beams with high-strength concrete. Besides, the effect of using shear studs to improve the composite interaction between the GFRP beam and concrete as well as the effect of web stiffeners of GFRP were explored. Encasing the GFRP

... Show More
Scopus (7)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Some Durability Test of No-Fine Concrete
...Show More Authors

In this study, two types of mixes were adopted by using two grading of coarse aggregate. The practical side of this study was to produce no-fine aggregate concrete by using crushed clay brick aggregates. The durability of the produced concrete and internal sulfate attack was studied.      For durability assessment, it is found that the no-fine concrete made with crushed brick aggregate lost about (15-25) % of its compressive strength after being subjected to 60 cycles of wetting and drying with age 120 days. The curing condition showed that the water curing improved the compressive strength with a rate higher than that when sealed or air dry curing were used. The crushed brick no-fine concrete de

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
EFFCT OF HOOPS AND COLUMN AXIAL LOAD ON SHEAR STRENGTH OF HIGH-STRENGTH FIBER REINFORCED BEAM-COLUMN JOINTS
...Show More Authors

A reinforced concrete frame is referred as "RIGID FRAMES". However, researches indicate that the Beam-Column joint (BCJ) is definitely not rigid. In addition, extensive research shows that failure may occur at the joint instead of in the beam or the column. Joint failure is known to be a catastrophic type which is difficult to repair.
This study was carried out to investigate the effect of hoops and column axial load on the shear strength of high-strength fiber reinforced Beam-Column Joints by using a numerical model based on finite element method using computer program ANSYS (Version 11.0). The variables are: diameter of hoops and magnitude of column axial load.
The theoretical results obtained from ANSYS program are in a good a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Iraqi Journal Of Science
A Study of compression strength and flexural strength for Polymer Concrete
...Show More Authors

Polymer concrete were prepared by mixing epoxy resin with sand particles in three different grain size (150-300) , (300-600 ) and (600- 1200) μm respectively. The percentage of epoxy was 15%, 20 %, 25% and 30% wt of the total weight. Compression strength and flexural strength tests were carried out for the prepared samples.
The percentages of epoxy resin at 20% wt and 25% wt showed best mechanical properties for all grain sizes. These percentages were adopted to fill the voids between particles sand have two different size ranges (150-600) μm and {(150-300) & (600-1200)} μm respectively to obtain more dense material. The results showed that the strength of polymer composite at 20% resin is higher than 25% resin.

View Publication Preview PDF
Publication Date
Fri Mar 03 2017
Journal Name
Chalcogenide Letters
INFLUENCE OF HEAT TREATMENT ON SOME PHYSICAL PROPERTIES OF Zn0.9Sn0.1S THIN FILMS
...Show More Authors

Publication Date
Wed Sep 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Effect of Nano Calcium Carbonate on Some Properties of Reactive Powder Concrete
...Show More Authors

View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Journal Of Engineering
Effect of Distributing Steel Fibers on Some Properties of Slurry Infiltrated Fiber Concrete
...Show More Authors

The slurry infiltrated fiber concrete (SIFCON) is nowadays considered a special type of high fiber content concrete; it is high strength and high performance material. This paper investigates the effect of spread steel fiber into the slurry mortar on some properties of SIFCON. According to fiber distribution, two sets were used in this investigation. The first set consisted of randomly distributing fibers inside the slurry. The second set was by placing the fibers in an orderly manner inside the slurry. Crimped steel fibers with an aspect ratio of (60) were used. Two different volume fractions percentage of (7% and 9%) by volume of mold were used in both sets for this study. Also, a w/c ratio of (0.35) and superplasticiz

... Show More
View Publication Preview PDF
Crossref (4)
Crossref