Preferred Language
Articles
/
joe-362
Compressive Strength of Bottle-Shaped Compression Fields of Fiber Reinforced Concrete Members

Applying load to a structural member may result in a bottle-shaped compression field especially when the width of the loading is less than the width of bearing concrete members. At the Building and Construction Department – the University of Technology-Iraq, series tests on fibre reinforced concrete specimens were carried out, subjected to compression forces at the top and bottom of the specimens to produce compression field. The effects of steel fibre content, concrete compressive strength, transverse tension reinforcement, the height of test specimen, and the ratio of the width of loading plate to specimen width were studied by testing a total of tenth normal strength concrete blocks with steel fibre and one normal strength concrete block without steel fibres. Based on experimental results; all the test specimens failed with the splitting of concrete directly under the loading plate. Increased the uniaxial compressive strength of concrete increases the maximum bearing capacity of compressive stresses. The load-transverse deformation initially behaves linearly and shows some nonlinearity before failure. Addition of steel fibre to normal strength concrete or presence of transverse reinforcement, delay the reaching of maximum compressive stress after the presence of the first crack.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Nov 02 2023
Journal Name
Journal Of Engineering
Prediction Unconfined Compressive Strength for Different Lithology Using Various Wireline Type and Core Data for Southern Iraqi Field

Unconfined Compressive Strength is considered the most important parameter of rock strength properties affecting the rock failure criteria.  Various research have developed rock strength for specific lithology to estimate high-accuracy value without a core.  Previous analyses did not account for the formation's numerous lithologies and interbedded layers. The main aim of the present study is to select the suitable correlation to predict the UCS for hole depth of formation without separating the lithology. Furthermore, the second aim is to detect an adequate input parameter among set wireline to determine the UCS by using data of three wells along ten formations (Tanuma, Khasib, Mishrif, Rumaila, Ahmady, Maudud, Nahr Um

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi Journal Of Laser
PDF Fiber Laser Effect on Bond Strength of Titanium implant abutment to Resin Cement

Aim: surface modification of titanium using fiber laser 1064 nm to enhance the bond strength to resin cement. Material and Methods: thirty titanium discs of 0.6 cm x 0.3 cm (diameter and thickness respectively) were categorized after preparation into three groups (n=10) as follows: control group with no surface treatment and two test groups were treated with fiber laser after estimation the appropriate parameters in the pilot study which are 81 ns pulse duration, 30,000 Hz frequency, 50 µm spot size and 10,000 mm/s scanning speed and different average power values (10 W and 20 W) depending on the tested group. Titanium discs surface characterization was performed by scanning electron microscope (SEM), a

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 17 2017
Journal Name
Al-khwarizmi Engineering Journal
Effect of Nano Powder on Mechanical and Physical Properties of Glass Fiber Reinforced Epoxy Composite

Fiber reinforced polymer composite is an important material for structural application. The diversified application of FRP composite has taken center of attraction for interdisciplinary research. However, improvements on mechanical properties of this class of materials are still under research for different applications. In this paper we have modified the epoxy matrix by Al2O3, SiO2 and TiO2 nano particles in glass fiber/epoxy composite to improve the mechanical and physical properties. The composites are fabricated by hand lay-up method. It is observed that mechanical properties like flexural strength, hardness are more in case of SiO2 modified epoxy composite compare to other nano

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 01 2024
Journal Name
Journal Of Engineering
Improving the Bearing Capacity of Clay Soil Using Plastic Bottle Waste

With the increase in industry and industrial products, quantities of waste have increased worldwide, especially plastic waste, as plastic pollution is considered one of the wastes of the modern era that threatens the environment and living organisms. On this basis, a solution must be found to use this waste and recycle it safely so that it does not threaten the environment. Therefore, this research used plastic waste as an improvement material for clay soil. In this research, two types of tests were conducted, the first of which was a laboratory test, where the undrained shear strength (cohesion), compression index (Cc), and swelling index (Cr) of the improved and unimproved soils were calculated (plastic was added in pr

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Ssrn Electronic Journal
Design of Earthquake-Resistant Buildings by Using Reinforced Concrete or Steel Flexible Corner Joints

This study focuses on studying the effect of reinforced steel in detail, and steel reinforcement (tensile ratio, compression ratio, size, and joint angle shape) on the strength of reinforced concrete (compressive strength) Fc' and searching for the most accurate details of concrete divisions, their behavior, and corner resistance of reinforced concrete joint. The comparison of this paper with previous studies, especially in the studied properties. The conclusions of the chapter are summarized that these effects had a clear effect and a specific effect on the behavior and resistance of the reinforced concrete corner joints under the negative moments and under their influence and the resulting stress conditions. The types of defects that can

... Show More
Crossref (1)
Crossref
View Publication
Publication Date
Thu Aug 31 2023
Journal Name
Materials
Comparative Analysis of Reinforced Asphalt Concrete Overlays: Effects of Thickness and Temperature

Reflection cracking in asphalt concrete (AC) overlays is a common form of pavement deterioration that occurs when underlying cracks and joints in the pavement structure propagate through an overlay due to thermal and traffic-induced movement, ultimately degrading the pavement’s lifespan and performance. This study aims to determine how alterations in overlay thickness and temperature conditions, the incorporation of chopped fibers, and the use of geotextiles influence the overlay’s capacity to postpone the occurrence of reflection cracking. To achieve the above objective, a total of 36 prism specimens were prepared and tested using an overlay testing machine (OTM). The variables considered in this study were the thickness of the

... Show More
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Aug 31 2023
Journal Name
Materials
Comparative Analysis of Reinforced Asphalt Concrete Overlays: Effects of Thickness and Temperature

Reflection cracking in asphalt concrete (AC) overlays is a common form of pavement deterioration that occurs when underlying cracks and joints in the pavement structure propagate through an overlay due to thermal and traffic-induced movement, ultimately degrading the pavement’s lifespan and performance. This study aims to determine how alterations in overlay thickness and temperature conditions, the incorporation of chopped fibers, and the use of geotextiles influence the overlay’s capacity to postpone the occurrence of reflection cracking. To achieve the above objective, a total of 36 prism specimens were prepared and tested using an overlay testing machine (OTM). The variables considered in this study were the thickness of the

... Show More
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Nanomedicine Research Journal
The effect of ZrO2 NPs addition on denture adaptation and diametral compressive strength of 3D printed denture base resin

Objective(s): The world of dentistry is constantly evolving, and with the advent of 3D printing technology, the possibilities are endless. However, little is known about the effects of adding ZrO2 NPs to the denture base resin of 3D additive manufacturing technique.Aim of this study is to evaluate the behavior of resin which is used to 3D printing of denture base with the addition of ZrO2 NPs on denture adaptation property and diametral compression strength.Methods: 60 samples were printed, 30 disks for diametral compressive test and 30 denture base for denture adaptation test. Three groups per test (n=10). The control group for each test included unreinforced 3Dprinted denture base resin, and the other groups were  reinforced with (2&

... Show More
View Publication
Publication Date
Wed Dec 14 2016
Journal Name
Journal Of Baghdad College Of Dentistry
Evaluation of Impact and Transverse Strength of Denture Bases Repaired with Nano Reinforced Resin

Background: Failure of resin bases were a major disadvantage recorded in the constructed dentures. Reinforcements of the repair joint with nano fillers represent an attempt to enhance the strength and durability. The purpose of the research was to estimate the influence of nano fillers reinforcement with (ZrO2 and Al2O3) on impact and transverse strength of denture bases repaired with either cold or hot processing acrylic resin. Materials and methods: A hundred and forty (140) samples were processed with hot cured resin and organized in subgroups depending on the repair materials and condition (without repair (control), repair with hot cure, cold cure, hot and cold cure reinforced with either (5% Zr2O or 0.5% Al2O3). The samples in these

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Jan 11 2021
Journal Name
Earth And Environmental Science
Impact Resistance of Limestone Cement Self Compacting Concrete Reinforced by Locally Available Grids

Impact strength of self-compacted concrete is a field of interest, mostly when the concrete is produced from sustainable materials. This research's main objective is to clarify the ability to use two types of Portland limestone cement (Karasta and Tasluja) in self compacted concrete under impact loading, further to the economic and environmental benefits of the limestone cement. The impact loading was applied by a low-speed test, using the drop ball on concrete. Moreover, the study reveals the resistance of the grids reinforced concrete to impact loading by using polymer grid, and steel grid reinforced concrete slabs. Mixes reinforced by steel mesh had the highest results, indicating that the steel mesh was more robust because it had

... Show More