Preferred Language
Articles
/
joe-352
Mixed Convection Heat Transfer in a Vertical Saturated Concentric Annulus Packed with a Metallic Porous Media
...Show More Authors

Mixed convection heat transfer in a vertical concentric annulus packed with a metallic porous media and heated at a constant heat flux is experimentally investigated with water as the working fluid. A series of experiments have been carried out with a Rayleigh number range from Ra=122418.92 to 372579.31 and Reynolds number that based on the particles diameter of Red=14.62, 19.48 and 24.36. Under steady state condition, the measured data were collected and analyzed. Results show that the wall surface temperatures are affected by the imposed heat flux variation and Reynolds number variation. The variation of the local heat transfer coefficient and the mean Nusselt number are presented and analyzed. An empirical correlation has been proposed for computing the Nusselt number for the geometry and boundary conditions under investigation.    

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Mar 30 2013
Journal Name
Mathematical Problems In Engineering
CFD analysis of Heat transfer and friction factor characteristics in a circular tube fitted with Quadrant-cut twisted tape inserts
...Show More Authors

Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Energy Storage
Effects of non-uniform fin arrangement and size on the thermal response of a vertical latent heat triple-tube heat exchanger
...Show More Authors

View Publication
Scopus (43)
Crossref (40)
Scopus Clarivate Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Entransy dissipation of Shell and Double Concentric Tube Heat Exchanger Calculations and Analysis
...Show More Authors

Shell-and-double concentric tube heat exchanger is one of the new designs that enhance the heat transfer process. Entransy dissipation is a recent development that incorporates thermodynamics in the design and optimization of heat exchangers. In this paper the concept of entransy dissipation is related to the shell-and-double concentric tube heat exchanger for the first time, where the experiments were conducted using hot oil with temperature of 80, 100 and 120°C, flow rate of cold water was 0.667, 1, and 1.334 kg/m3 respectively and the temperature of inlet cold water was 20°C. The entransy dissipation rate due to heat transfer and to fluid friction or pressure drop was studied.

 

View Publication Preview PDF
Publication Date
Fri Nov 01 2019
Journal Name
Journal Of Engineering
Analysis of Shell and Double Concentric Tube Heat Exchanger Using CFD Application
...Show More Authors

This study focuses on CFD analysis in the field of the shell and double concentric tube heat exchanger. A commercial CFD package was used to resolve the flow and temperature fields inside the shell and tubes of the heat exchanger used. Simulations by CFD are performed for the single shell and double concentric tube.

This heat exchanger included 16 tubes and 20 baffles. The shell had a length of 1.18 m and its diameter was 220 mm. Solid Works 2014, ANSYS 15.0 software was used to analyze the fields of flow and temperature inside the shell and the tubes. The RNG k-ε model was used and it provided good results. Coarse and fine meshes were investigated, showing that aspect ratio has no significant effect. 14 million

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
Peristaltic Flow with Nanofluid under Effects of Heat Source, and Inclined Magnetic Field in the Tapered Asymmetric Channel through a Porous Medium
...Show More Authors

     In this present paper , a special model was built to govern the equations of  two dimensional peristaltic transport to nanofluid  flow of a heat source in a tapered  considered in an asymmetric channel. The equations of dimensionless temperature concentration are analytical solve under assumption slow Reynolds number and long wave length. Furthermore, the results that receive by expressing the maximum pressure rise  communicates increased in case of  non-Newtonian fluid when equated with Newtonian fluid. Finally, MATHEMATICA  11 program has been used to solve such system after obtaining the initial conditions.  Most of the results  of drawing  for many are obtained via above program .

View Publication Preview PDF
Scopus (4)
Scopus Crossref
Publication Date
Tue Nov 09 2021
Journal Name
Energies
Natural Convection Effect on Solidification Enhancement in a Multi-Tube Latent Heat Storage System: Effect of Tubes’ Arrangement
...Show More Authors

The solidification process in a multi-tube latent heat energy system is affected by the natural convection and the arrangement of heat exchanger tubes, which changes the buoyancy effect as well. In the current work, the effect of the arrangement of the tubes in a multi-tube heat exchanger was examined during the solidification process with the focus on the natural convection effects inside the phase change material (PCM). The behavior of the system was numerically analyzed using liquid fraction and energy released, as well as temperature, velocity and streamline profiles for different studied cases. The arrangement of the tubes, considering seven pipes in the symmetrical condition, are assumed at different positions in the system, i

... Show More
View Publication
Scopus (10)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
ESTIMATION OF THE OPTIMUM BED THICKNESS OF A FLOWTHROUGH POROUS ELECTRODE (FTPE) WORKING UNDER MASS TRANSFER CONTROL
...Show More Authors

In this paper, a theoretical analysis of optimum bed thickness operates under mass transfer control for realizing a high efficiency and reaction conversion of an electrochemical reactor has been made based on flowthrough porous electrode (FTPE) configuration. Many models have been used to represent the optimum bed thickness by taking a look into previous works concerned and collecting all related information, data, and models. The parameters that affect the optimum bed thickness have been visualized and reviewed, and almost all of them have been examined by experimental data from different sources and based on the various models. It has been found that the increase in electrolyte flow rate, concentration, limiting current density, and sp

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Dec 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Experimental Study on the Impact of External Geometrical Shape on Free and Forced Convection Time Dependent Average Heat Transfer Coefficient during Cooling Process
...Show More Authors

In this research, an experimental study was conducted to high light the impact of the exterior shape of a cylindrical body on the forced and free convection heat transfer coefficients when the body is hold in the entrance of an air duct. The impact of changing the body location within the air duct and the air speed are also demonstrated. The cylinders were manufactured with circular, triangular and square sections of copper for its high thermal conductivity with appropriate dimensions, while maintaining the surface area of all shapes to be the same. Each cylinder was heated to a certain temperature and put inside the duct at certain locations. The temperature of the cylinder was then monitored. The heat transfer coefficient were then cal

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Powell-Eyring Fluid Peristaltic Transfer in an Asymmetric Channel and A Porous Medium under the Influence of A Rotation and an Inclined Magnetic Field
...Show More Authors

     In this article, we investigate the peristaltic flow of a Powell-Eyring fluid flowing in an asymmetrical channel with an inclining magnetic field through a porous medium, and we focus on the impact that varying rotation has on this flow. Long wavelength and low Reynolds number are assumed, where the perturbation approach is used to solve the nonlinear governing equations in the Cartesian coordinate system to produce series solutions. Distributions of velocity and pressure gradients are expressed mathematically. The effect of these parameters is discussed and illustrated graphically through the set of figures. To get these numerical results, we used the math program MATHEMATICA.

View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Modified Grid Clustering Technique to Predict Heat Transfer Coefficient in a Duct of Arbitrary Cross Section Area
...Show More Authors

A simple straightforward mathematical method has been developed to cluster grid nodes on a boundary segment of an arbitrary geometry that can be fitted by a relevant polynomial. The method of solution is accomplished in two steps. At the first step, the length of the boundary segment is evaluated by using the mean value theorem, then grids are clustered as desired, using relevant linear clustering functions. At the second step, as the coordinates cell nodes have been computed and the incremental distance between each two nodes has been evaluated, the original coordinate of each node is then computed utilizing the same fitted polynomial with the mean value theorem but reversibly.

The method is utilized to predict

... Show More
View Publication Preview PDF