Ball and Plate (B&P) system is a benchmark system in the control engineering field that has been used to verify many control methods. In this paper the design of a sliding mode . controller has been investigated and verified in real-time via implementation on a real ball and plate system hardware. The mathematical model has been derived and the necessary parameters have been measured. The sliding mode controller has been designed based on the obtained mathematical model. The resulting controller has been implemented using the Arduino Mega 2560 and a ball and plate system built completely from scratch. The Arduino has been programmed by the Arduino support target for Simulink. Three test signals has been used for verification purposes, namely: single point stabilizing, circular trajectory tracking, and square trajectory tracking. The results obtained have shown that sliding mode controller is able to follow the desired test signals with low error.
The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show More
XML is being incorporated into the foundation of E-business data applications. This paper addresses the problem of the freeform information that stored in any organization and how XML with using this new approach will make the operation of the search very efficient and time consuming. This paper introduces new solution and methodology that has been developed to capture and manage such unstructured freeform information (multi information) depending on the use of XML schema technologies, neural network idea and object oriented relational database, in order to provide a practical solution for efficiently management multi freeform information system.
This paper demonstrates the design of an algorithm to represent the design stages of fixturing system that serve in increasing the flexibility and automation of fixturing system planning for uniform polyhedral part. This system requires building a manufacturing feature recognition algorithm to present or describe inputs such as (configuration of workpiece) and built database system to represents (production plan and fixturing system exiting) to this algorithm. Also knowledge – base system was building or developed to find the best fixturing analysis (workpiece setup, constraints of workpiece and arrangement the contact on this workpiece) to workpiece.
The goal of the research is to develop a sustainable rating system for roadway projects in Iraq for all of the life cycle stages of the projects which are (planning, design, construction and operation and maintenance). This paper investigates the criteria and its weightings of the suggested roadway rating system depending on sustainable planning activities. The methodology started in suggesting a group of sustainable criteria for planning stage and then suggesting weights from (1-5) points for each one of it. After that data were collected by using a closed questionnaire directed to the roadway experts group in order to verify the criteria weightings based on the relative importance of the roadway related impacts
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show MoreDue to the intensity of competition between economic units that run the trade in durable goods had to pay a lot of these companies to follow the new selling methods aimed at attracting customers to be able to increase its sales and thereby increase their profits , these methods are installment sales, which had been in great demand by the customers with limited income, who provides them with the possibility of possession and use of such goods and to postpone the full amount of the payment to the seller, This transaction sales have grown even became installment sales system at the present time of the common types of sales transactions and deployed a lot in our environment and in many sectors of the market, and in some cases m
... Show MoreHuman interaction technology based on motion capture (MoCap) systems is a vital tool for human kinematics analysis, with applications in clinical settings, animations, and video games. We introduce a new method for analyzing and estimating dorsal spine movement using a MoCap system. The captured data by the MoCap system are processed and analyzed to estimate the motion kinematics of three primary regions; the shoulders, spine, and hips. This work contributes a non-invasive and anatomically guided framework that enables region-specific analysis of spinal motion which could be used as a clinical alternative to invasive measurement techniques. The hierarchy of our model consists of five main levels; motion capture system settings, marker data
... Show MoreIn this paper, the density of state (DOS) at Fe metal contact to Titanium dioxide semiconductor (TiO2) has been studied and investigated using quantum consideration approaches. The study and calculations of (DOS) depended on the orientation and driving energies. was a function of TiO2 and Fe materials' refractive index and dielectric constant. Attention has focused on the effect of on the characteristic of (DOS), which increased with the increasing of refractive index and dielectric constant of Fe metal and vice versa. The results of (DOS) and its relation with and values of system have been discussed. As for contact system is increased, (DOS) values increased at first, but the relation is disturbed later and transforms into an inve
... Show More