Preferred Language
Articles
/
joe-328
A Spike Neural Controller for Traffic Load Parameter with Priority-Based Rate in Wireless Multimedia Sensor Networks
...Show More Authors

Wireless Multimedia Sensor Networks (WMSNs) are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to   produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC). The Modify Spike Neural Network controller (MSNC) can calculate the appropriate traffic load parameter μ for each parent node and then use in the EWPBRC algorithm to estimate the transmission rate of parent nodes and then assign a suitable transmission rate for each child node. A comparative study between (MSNTLP with EWBPRC) and fuzzy logic controller for traffic load parameter with Exponential Weight of Priority Based Rate Control algorithm (FTLP with EWBPRC) algorithm shows that the (MSNTLP with EWBPRC) is more efficient than (FTLP with EWBPRC) algorithm in terms of packet loss, queue delay and throughput. Another comparative study between (MSNTLP with EWBPRC) and EWBPRC with fixed traffic load parameter (µ) shows that the MSNTLP with EWBPRC is more efficient than EWBPRC with fixed traffic load parameter (µ) in terms of packet loss ratio and queue delay. A simulation process is developed and tested using the network simulator _2 (NS2) in a computer having the following properties: windows 7 (64-bit), core i7, RAM 8GB, hard 1TB.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Prediction of Ryznar Stability Index for Treated Water of WTPs Located on Al-Karakh Side of Baghdad City using Artificial Neural Network (ANN) Technique
...Show More Authors

In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respe

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
International Journal Of Interdisciplinary Telecommunications And Networking
Simulated Performance of TFRC, DCCP, SCTP, and UDP Protocols Over Wired Networks
...Show More Authors

Multimedia applications impose different QoS requirements (e.g., bounded end-to-end delay and jitter) and need an enhanced transport layer protocol that should handle packet loss, minimize errors, manage network congestion, and transmit efficiently. Across an IP network, the transport layer protocol provides data transmission and affects the QoS provided to the application on hand. The most common transport layer protocols used by Internet applications are TCP and UDP. There are also advanced transport layer protocols such as DCCP and TFRC. The authors evaluated the performance of UDP, DCCP, SCTP, and TFRC over wired networks for three traffic flows: data transmission, video streaming, and voice over IP. The evaluation criteria were thro

... Show More
View Publication
Crossref (2)
Clarivate Crossref
Publication Date
Tue Jan 02 2018
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Multiple choice questions and essay questions in assessment of success rate in medical physiology
...Show More Authors

Background: Assessment is an important part of the learning cascade in education. Students realize it as an influential motivator to direct and guide their learning. The method of assessment determines the way the students reach high levels of learning. It has been documented that one of factor affecting students’ choice of learning approach is the way how assessment is being performed. Many methods of assessment namely multiple choice questions, essay questions and others are mainly used to assess basic science knowledge in undergraduate education. Objectives: The aim of this study is to compare multiple choice questions (MCQ) and essay questions (EQ) (record the success and failure rate of multiple choice questions (MCQ) and essay quest

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Al-khwarizmi Engineering Journal
An Experimental Study on Electrochemical Grinding Parameters on Hardness and Material Removal Rate for Stainless Steel 316
...Show More Authors

Electrochemical Grinding (ECG) process is a mechanically assisted electrochemical process for material processing. The process is able to successfully machine electrically conducting harder materials at faster rate with improved surface finish and dimensional control. This research studies the effect of applied current, electrolyte concentration, spindle speed and the gap between workpiece and tool on hardness and material removal rate during electrochemical grinding for stainless steel 316. The characteristic features of the electrochemical grinding process are explored through Taguchi-design-based experimental studies. The better hardness can be obtained at 10 A of the current, 150 g/l of the electrolyte concentration, 0.3 mm of gap an

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 09 2018
Journal Name
Al-khwarizmi Engineering Journal
Neural Network Modeling of Cutting Force and Chip Thickness Ratio for Turning Aluminum Alloy 7075-T6
...Show More Authors

The turning process has various factors, which affecting machinability and should be investigated. These are surface roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed to model the chip thickness ratio. T

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Iop Conference Series: Earth And Environmental Science
Computer Model Application for Sorting and Grading Citrus Aurantium Using Image Processing and Artificial Neural Network
...Show More Authors
Abstract<p>This study was conducted in College of Science \ Computer Science Department \ University of Baghdad to compare between automatic sorting and manual sorting, which is more efficient and accurate, as well as the use of artificial intelligence in automated sorting, which included artificial neural network, image processing, study of external characteristics, defects and impurities and physical characteristics; grading and sorting speed, and fruits weigh. the results shown value of impurities and defects. the highest value of the regression is 0.40 and the error-approximation algorithm has recorded the value 06-1 and weight fruits fruit recorded the highest value and was 138.20 g, Gradin</p> ... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Therapeutic Delivery
Particles-based Medicated Wound Dressings: A Comprehensive Review
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Oct 01 2017
Journal Name
2017 47th European Microwave Conference (eumc)
A semiconductor based millimeter-wave waveguide junction circulator
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Computer-based plagiarism detection techniques: A comparative study
...Show More Authors

Plagiarism is becoming more of a problem in academics. It’s made worse by the ease with which a wide range of resources can be found on the internet, as well as the ease with which they can be copied and pasted. It is academic theft since the perpetrator has ”taken” and presented the work of others as his or her own. Manual detection of plagiarism by a human being is difficult, imprecise, and time-consuming because it is difficult for anyone to compare their work to current data. Plagiarism is a big problem in higher education, and it can happen on any topic. Plagiarism detection has been studied in many scientific articles, and methods for recognition have been created utilizing the Plagiarism analysis, Authorship identification, and

... Show More
Publication Date
Mon Mar 01 2021
Journal Name
Iop Conference Series: Materials Science And Engineering
Speech Enhancement Algorithm Based on a Hybrid Estimator
...Show More Authors
Abstract<p>Speech is the essential way to interact between humans or between human and machine. However, it is always contaminated with different types of environment noise. Therefore, speech enhancement algorithms (SEA) have appeared as a significant approach in speech processing filed to suppress background noise and return back the original speech signal. In this paper, a new efficient two-stage SEA with low distortion is proposed based on minimum mean square error sense. The estimation of clean signal is performed by taking the advantages of Laplacian speech and noise modeling based on orthogonal transform (Discrete Krawtchouk-Tchebichef transform) coefficients distribution. The Discrete Kra</p> ... Show More
View Publication
Crossref (11)
Crossref