Preferred Language
Articles
/
joe-328
A Spike Neural Controller for Traffic Load Parameter with Priority-Based Rate in Wireless Multimedia Sensor Networks

Wireless Multimedia Sensor Networks (WMSNs) are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to   produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC). The Modify Spike Neural Network controller (MSNC) can calculate the appropriate traffic load parameter μ for each parent node and then use in the EWPBRC algorithm to estimate the transmission rate of parent nodes and then assign a suitable transmission rate for each child node. A comparative study between (MSNTLP with EWBPRC) and fuzzy logic controller for traffic load parameter with Exponential Weight of Priority Based Rate Control algorithm (FTLP with EWBPRC) algorithm shows that the (MSNTLP with EWBPRC) is more efficient than (FTLP with EWBPRC) algorithm in terms of packet loss, queue delay and throughput. Another comparative study between (MSNTLP with EWBPRC) and EWBPRC with fixed traffic load parameter (µ) shows that the MSNTLP with EWBPRC is more efficient than EWBPRC with fixed traffic load parameter (µ) in terms of packet loss ratio and queue delay. A simulation process is developed and tested using the network simulator _2 (NS2) in a computer having the following properties: windows 7 (64-bit), core i7, RAM 8GB, hard 1TB.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
The Performance Differences between Using Recurrent Neural Networks and Feedforward Neural Network in Sentiment Analysis Problem

 With the spread use of internet, especially the web of social media, an unusual quantity of information is found that includes a number of study fields such as psychology, entertainment, sociology, business, news, politics, and other cultural fields of nations. Data mining methodologies that deal with social media allows producing enjoyable scene on the human behaviour and interaction. This paper demonstrates the application and precision of sentiment analysis using traditional feedforward and two of recurrent neural networks (gated recurrent unit (GRU) and long short term memory (LSTM)) to find the differences between them. In order to test the system’s performance, a set of tests is applied on two public datasets. The firs

... Show More
Scopus (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
A New Fractal Printed Dipole Antenna Based on Tent Transformations for Wireless Communication Applications

In this paper, a compact multiband printed dipole antenna is presented as a candidate for use in wireless communication applications. The proposed fractal antenna design is based on the second level tent transformation. The space-filling property of this fractal geometry permits producing longer lengths in a more compact size. Theoretical performance of this antenna has been calculated using the commercially available software IE3D from Zeland Software Inc. This electromagnetic simulator is based on the method of moments (MoM). The proposed dipole antenna has been found to possess a considerable size reduction compared with the conventional printed or wire dipole antenna designed at the same design frequency and using the same substrate

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
PC-Based Controller for Shell and Tube Heat Exchanger

PC-based controller is an approach to control systems with Real-Time parameters by controlling selected manipulating variable to accomplish the objectives. Shell and tube heat exchanger have been identified as process models that are inherently nonlinear and hard to control due to unavailability of the exact models’ descriptions. PC and analogue input output card will be used as the controller that controls the heat exchanger hot stream to the desired temperature.
The control methodology by using four speed pump as manipulating variable to control the temperature of the hot stream to cool to the desired temperature.
In this work, the dynamics of cross flow shell and tube heat exchanger is modeled from step changes in cold water f

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 02 2017
Journal Name
Al-khwarizmi Engineering Journal
Direction Finding Using GHA Neural Networks

 This paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).

 

 

View Publication Preview PDF
Publication Date
Sat Sep 01 2012
Journal Name
2012 International Conference On Statistics In Science, Business And Engineering (icssbe)
A proposal method for selecting smoothing parameter with missing values

In this paper we proposed a new method for selecting a smoothing parameter in kernel estimator to estimate a nonparametric regression function in the presence of missing values. The proposed method is based on work on the golden ratio and Surah AL-E-Imran in the Qur'an. Simulation experiments were conducted to study a small sample behavior. The results proved the superiority the proposed on the competition method for selecting smoothing parameter.

Scopus (1)
Scopus Crossref
View Publication
Publication Date
Fri Jun 01 2007
Journal Name
Journal Of Al-nahrain University Science
ON THE GREEDY RADIAL BASIS FUNCTION NEURAL NETWORKS FOR APPROXIMATION MULTIDIMENSIONAL FUNCTIONS

The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
Medical Image Classification for Coronavirus Disease (COVID-19) Using Convolutional Neural Networks

     The coronavirus is a family of viruses that cause different dangerous diseases that lead to death. Two types of this virus have been previously found: SARS-CoV, which causes a severe respiratory syndrome, and MERS-CoV, which causes a respiratory syndrome in the Middle East. The latest coronavirus, originated in the Chinese city of Wuhan, is known as the COVID-19 pandemic. It is a new kind of coronavirus that can harm people and was first discovered in Dec. 2019. According to the statistics of the World Health Organization (WHO), the number of people infected with this serious disease has reached more than seven million people from all over the world. In Iraq, the number of people infected has reached more than tw

... Show More
Scopus (15)
Crossref (6)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Scopus Crossref
View Publication
Publication Date
Sun Jan 01 2017
Journal Name
International Journal Of Mathematics In Operational Research
Scopus (2)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Network Traffic Prediction Based on Time Series Modeling

    Predicting the network traffic of web pages is one of the areas that has increased focus in recent years. Modeling traffic helps find strategies for distributing network loads, identifying user behaviors and malicious traffic, and predicting future trends. Many statistical and intelligent methods have been studied to predict web traffic using time series of network traffic. In this paper, the use of machine learning algorithms to model Wikipedia traffic using Google's time series dataset is studied. Two data sets were used for time series, data generalization, building a set of machine learning models (XGboost, Logistic Regression, Linear Regression, and Random Forest), and comparing the performance of the models using (SMAPE) and

... Show More
Scopus Crossref
View Publication Preview PDF