Preferred Language
Articles
/
joe-326
BatchHeavy MetalsBiosorption by Punica granatum Peels: Equilibrium andKinetic Studies
...Show More Authors

This research was conducted to study the feasibility of using fruit peels as biosorbent for removal of Pb+2, Cu+2 and Zn+2 ions from simulated wastewater. A waste biomass of Pomegranate Peel or Punicagranatum L. (P. granatum L.) was chosen as neutral biosorbent in this study.Fourier transformation infrared (FTIR) was used to characterize the surface of PGP, the results confirm that amino, carboxylic, hydroxyl and carbonyl group on the surface of PGP. Different parameters such as initial concentration range between (25-200) mg/L, pH (3-7), contact time (1-2) hour, amount of sorbent (0.1- 4) gm, agitation speed range (200- 500) rpm and temperature (25- 50oC), influencing the sorptive process were examined. Sorption equilibrium isotherm and kinetic data fit well by the Langmuir isotherm and the pseudo-second-order kinetic model, respectively. Sorption processes were spontaneous and exothermic in nature according to the thermodynamic results and the equilibrium was attained within 60 minute. The amount of sorbed metal ions was calculated as 9.9, 9.5 and 7.75 mg/g dry PGP for Pb+2, Cu+2 and Zn+2ions, respectively, at pH 5; temperature 25oC; contact time 1hr and 4 gm of peels.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 30 2018
Journal Name
Baghdad Science Journal
Adsorption and Kinetic Study of Methylene Blue dye on New Surface Derived from Copolymer (Melamine – Formaldehyde – Para- methyl Anisole)
...Show More Authors

A new copolymer (MFA) was prepared from condensation of melamine (M) with p- methyl – anisole (A) in the presence of condensation agent like 37% (w/v) of formaldehyde. The new copolymer was characterized by elemental, IR and HNMR spectra. The chelating ion-exchange property of this polymer was studied for methylene blue dye in aqueous solution in 100-200ppm concentrations. The adsorption study was carried out over a wide range of pH, shaking time and in media of various kinetic parameters models. Thermal parameters like enthalpy, entropy and Gibbs free energy of adsorption process of methylene blue on surface of MFA resin were determined on the basis of kinetic parameters at different temperatures. To describe the equilibrium of adsorp

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Removal of Dissolved Trivalent Chromium Ions from Contaminated Wastewater using Locally Available Raw Scrap Iron-Aluminum Waste
...Show More Authors

The present study is to investigate the possibility of using wastes in the form of scrap iron (ZVI) and/ or aluminum ZVAI for the detention and immobilization of the chromium ions in simulated wastewater. Different batch equilibrium parameters such as contact time (0-250) min, sorbent dose (2-8 g ZVI/100 mL and 0.2-1 g ZVAI/100 mL), initial pH (3-6), initial pollutant concentration of 50 mg/L, and speed of agitation (0-250) rpm were investigated. Maximum contaminant removal efficiency corresponding to (96 %) at 250 min contact time, 1g ZVAI/ 6g ZVI sorbent mass ratio, pH 5.5, pollutant concentration of 50 mg/L initially, and 250 rpm agitation speed were obtained.

The best isotherm model for the batch single Cr(III) uptake by ZVI

... Show More
View Publication Preview PDF
Crossref (12)
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Ammonia Removal in Free-Surface Constructed Wetlands Employing Synthetic Floating Islands: Employing synthetic floating islands
...Show More Authors

Free water surface constructed wetlands (FSCWs) can be used to complement conventional waste water treatment but removal efficiencies are often limited by a high ratio of water volume to biofilm surface area (i.e. high water depth). Floating treatment wetlands (FTWs) consist of floating matrices which can enhance the surface area available for the development of fixed microbial biofilms and provide a platform for plant growth (which can remove pollutants by uptake).  In this study the potential of FTWs for ammoniacal nitrogen (AN) removal was evaluated using experimental mesocosms operated under steady-state flow conditions with ten different treatments (two water depths, two levels of FTW mat coverage, two different plant densities and

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
Comparison Study of Adsorption of Lead and Methylene Blue on Zeolite, Activated Carbon and Their Composite Materials
...Show More Authors

In this study, composite materials consisting of Activated Carbon (AC) and Zeolite were prepared for application in the removal of methylene blue and lead from an aqueous solution. The optimum synthesis method involves the use of metakaolinization and zeolitization, in the presence of activated carbon from kaolin, to form Zeolite. First, Kaolin was thermally activated into amorphous kaolin (metakaolinization); then the resultant metakaolin was attacked by alkaline, transforming it into crystalline zeolite (zeolitization). Using nitrogen adsorption and SEM techniques, the examination and characterization of composite materials confirmed the presence of a homogenous distribution of Zeolite throughout the activated carbon.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Performance of Subsurface Flow Constructed Wetland Systems in the Treatment of Al-Rustumia Municipal Wastewater using Continuous Loading Feed
...Show More Authors

This study aimed at comparing the performance of vertical, horizontal and hybrid subsurface flow systems in secondary treatment for the effluent wastewater from the primary basins at Al-Rustumia wastewater treatment plant, Baghdad, Iraq. The treatments were monitored for six weeks while the testsduration were from 4 to 12 September 2018 under continuous wastewater feeding for chemical oxygen demand (COD), total suspended solid (TSS),ammonia-nitrogen(NH4-N) and phosphate (PO4-P) in comparison with FAO and USEPA standards for effluent discharge to evaluate the suitability of treated water for irrigation purposes. Among the systems planted with Phragmites Australia, the hybrid subsurface flow system which cons

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Conference: First International Conference On Water Resources
Modeling BOD of the Effluent from Abu-Ghraib Diary Factory using Artificial Neural Network October 2018
...Show More Authors

The proper operation, and control of wastewater treatment plants, is receiving an increasing attention, because of the rising concern about environmental issues. In this research a mathematical model was developed to predict biochemical oxygen demand in the waste water discharged from Abu-Ghraib diary factory in Baghdad using Artificial Neural Network (ANN).In this study the best selection of the input data were selected from the recorded parameters of the wastewater from the factory. The ANN model developed was built up with the following parameters: Chemical oxygen demand, Dissolved oxygen, pH, Total dissolved solids, Total suspended solids, Sulphate, Phosphate, Chloride and Influent flow rate. The results indicated that the constructed A

... Show More
Publication Date
Wed Dec 25 2019
Journal Name
Journal Of Engineering
Removal of Cadmium from Industrial Wastewater using Electrocoagulation Process
...Show More Authors

Cadmium is one of the heavy metal found in the wastewater of many industries. The electrocoagulation offers many advantages for the removal of cadmium over other methods. So the removal of cadmium from wastewater by using electrocoagulation was studied to investigate the effect of operating parameters on the removal efficiency. The studied parameters were the initial pH, initial concentration, and applied voltage. The study experiments were conducted in a batch reactor with  with two pairs of aluminum electrodes with dimension  and 2mm in thick with 1.5 cm space between them. The optimum removal was obtained at pH =7, initial concentration = 50 mg/L, and applied voltage = 20 V and it was 90%.

View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Tue Feb 28 2017
Journal Name
Journal Of Engineering
Non-Isothermal Crystallization Kinetics Model of PBT/ MWCNTs Nanocomposites
...Show More Authors

The non-isothermal crystallization kinetics and crystalline properties of nanocomposites poly butyleneterephthalate, [PBT] /multiwalled-carbon nanotubes (MWCNTs) were tested by differential scanning calorimetry (DSC). PBT/(MWCNTs) nanocomposite was prepared by ultrasonicated of MWCNTs (0.5, 1, 2, 4 wt %) in dichloromethane (DCM) and after that the powdered PBT polymer was added to the MWCNTs solution. The non-isothermal crystallization results show that increasing the MWCNTs contents, decreased the melting temperature (Tm) of PBT/(MWCNTs) nanocomposite as compared with pure PBT, while resulting in improving the degree of crystallinity. These results indicated that a little amount of MWCNTs can be evident strong nucleating agent in PBT na

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Kinetics and Activation Complex Thermodynamic Study of the Acidity Removal of Oleic Acid via Esterification Reaction on Commercial 13X Zeolite
...Show More Authors

   The study involved the removal of acidity from free fatty acid via the esterification reaction of oleic acid with ethanol. The reaction was done in a batch reactor using commercial 13X zeolite as a catalyst. The effects of temperatures (40 to 70 °C) and reaction time (up to 120 minutes) were studied using 6:1 mole ratio of pure ethanol to oleic acid and 5 wt. % of the catalyst. The results showed that acid removed increased with increasing temperature and reaction time. Also, the acidity removal rises sharply during the first reaction period and then changes slightly afterward. The highest acidity removal value was 67 % recorded at 110 minutes and 70 °C. An apparent homogeneous reversible reaction kinetic model has been proposed a

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Mar 30 2008
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Pyrolysis of High-density Polyethylene for the Production of Fuel-like Liquid Hydrocarbon
...Show More Authors

Pyrolysis of high density polyethylene (HDPE) was carried out in a 750 cm3 stainless steel autoclave reactor, with temperature ranging from 470 to 495° C and reaction times up to 90 minute. The influence of the operating conditions on the component yields was studied. It was found that the optimum cracking condition for HDPE that maximized the oil yield to 70 wt. % was 480°C and 20 minutes. The results show that for higher cracking temperature, and longer reaction times there was higher production of gas and coke. Furthermore, higher temperature increases the aromatics and produce lighter oil with lower viscosity.

View Publication Preview PDF