Preferred Language
Articles
/
joe-325
Experimental Evaluation of Thermal Performance of Solar Assisted Vapor Compression Heat Pump
...Show More Authors

The thermal performance of indirect expansion solar assisted heat pump, IX-SAHP, was investigated experimentally under Iraqi climate. An Indirect-Solar Assisted Heat Pump system was designed, built, instrumented and tested. Experimental tests were conducted by varying the controlling parameters to investigate their effects on the thermal performance of the IX-SAHP such as cooling water flow rate, heating water flow rate, ambient temperature and solar radiation intensity. The investigation covered values of cooling water flow rate of (2, 3, 4, 5 l/min) and heating water flow rate of (2, 3, 4, 5 l/min) under meteorological condition of Baghdad from November 2014 to January 2015.

The results indicated that the performance of the IX-SAHP is not dependent on the heating water flow rate. On the contrary of heating water flow rate, cooling water flow rate has significant effect on the thermal performance of the system. The COP of the heat pump system is decreased with increasing cooling water flow rate. The collector heat gain increase with increasing the solar radiation and ambient temperature, this leads to increase in COP from 2.2 to 2.39 as the ambient temperature and solar radiation increase from 9.9℃ and 268 W/m2 to 14.9 ℃ and 689 W/m2 respectively.

 

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 01 2014
Journal Name
Advances In Mechanical Engineering
Experimental and Numerical Investigations of Heat Transfer Characteristics for Impinging Swirl Flow
...Show More Authors

This paper reports experimental and computational fluid dynamics (CFD) modelling studies to investigate the effect of the swirl intensity on the heat transfer characteristics of conventional and swirl impingement air jets at a constant nozzle-to-plate distance ( L = 2 D). The experiments were performed using classical twisted tape inserts in a nozzle jet with three twist ratios ( y = 2.93, 3.91, and 4.89) and Reynolds numbers that varied from 4000 to 16000. The results indicate that the radial uniformity of Nusselt number (Nu) of swirl impingement air jets (SIJ) depended on the values of the swirl intensity and the air Reynolds number. The results also revealed that the SIJ that was fitted with an insert of y = 4.89, which correspo

... Show More
View Publication
Scopus (16)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Computational Thermal Sciences: An International Journal
EXPERIMENTAL AND NUMERICAL ANALYSIS FOR THERMAL PROBLEM OF FRICTIONAL BRAKE SYSTEM
...Show More Authors

The present work aims to validate the experimental results of a new test rig built from scratch to evaluate the thermal behavior of the brake system with the numerical results of the transient thermal problem. The work was divided into two parts; in the first part, a three-dimensional finite-element solution of the transient thermal problem using a new developed 3D model of the brake system for the selected vehicle is SAIPA 131, while in the second part, the experimental test rig was built to achieve the necessary tests to find the temperature distribution during the braking process of the brake system. We obtained high agreement between the results of the new test rig with the numerical results based on the developed model of the brake

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Apr 05 2023
Journal Name
Journal Of Engineering
Analytical Solution of Transient Heat Conduction through a Hollow Spherical Thermal Insulation Material of a Temperature Dependant Thermal Conductivity
...Show More Authors

The one-dimensional, spherical coordinate, non-linear partial differential equation of transient heat conduction through a hollow spherical thermal insulation material of a thermal conductivity temperature dependent property proposed by an available empirical function is solved analytically using Kirchhoff’s transformation. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner radius with a step change in temperature. Four thermal insulation materials were selected. An identical analytical solution was achieved when comparing the results of temperature distribution with available analytical solution for the same four case studies that assume a constant thermal con

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Analytical Solution of Transient Heat Conduction through a Hollow Cylindrical Thermal Insulation Material of a Temperature Dependant Thermal Conductivity
...Show More Authors

The one-dimensional, cylindrical coordinate, non-linear partial differential equation of transient heat conduction through a hollow cylindrical thermal insulation material of a thermal conductivity temperature dependent property proposed by an available empirical
function is solved analytically using Kirchhoff’s transformation. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner radius with a step change in temperature. Four thermal insulation materials were selected. An identical analytical solution was achieved when comparing the results of temperature distribution with available analytical solution for the same four case studies that assume a constant the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Yearly Energy, Exergy, and Environmental (3E) Analyses of A Photovoltaic Thermal Module and Solar Thermal Collector in Series
...Show More Authors

The annual performance of a hybrid system of a flat plate photovoltaic thermal system and a solar thermal collector (PVT/ST) is numerically analyzed from the energy, exergy, and environmental (CO2 reduction) viewpoints. This system can produce electricity and thermal power simultaneously, with higher thermal power and exergy compared to conventional photovoltaic thermal systems. For this purpose, a 3D transient numerical model is developed for investigating the system's performance in four main steps: (1) investigating the effects of the mass flow rate of the working fluid (20 to 50 kg/h) on the temperature behavior and thermodynamic performance of the system, (2) studying the impacts of using glass covers on the different parts of the s

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu May 31 2012
Journal Name
Al-khwarizmi Engineering Journal
An Experimental Study on the Effect of Shape and Location of Vortex Generators Ahead of a Heat Exchanger
...Show More Authors

An experimental study is carried out on the effect of vortex generators (Circular and square) on the flow and heat transfer at variable locations at (X = 0.5, 1.5, 2.5 cm) ahead of a heat exchanger with Reynolds number ranging from 62000< Re < 125000 and heat flux from 3000 ≤ q ≤ 8000 W/m2 .

In the experimental investigation, an apparatus is set up to measure the velocity and temperatures around the heat exchanger.                     

The results show that there is an effect for using vortex generators on heat transfer. Also, heat transfer depends on the shape and location. The circular is found t

... Show More
View Publication Preview PDF
Publication Date
Sat Jul 28 2018
Journal Name
Journal Of Engineering
Heat Transfer and Thermal Expansion of Coefficient EP -(MWCNT/x-TiO2)Nanocomposites
...Show More Authors

The thermal properties (thermal transfer and thermal expansion coefficient) of the enhanced epoxy resin (MWCNT / x-TiO2) were studied by weight ratios with the values (0%, 3%, 5%, 7% and 10%) and a constant ratio of 3% of MWCNT. The ultrasonic technology was used to prepare the neat and composites which were then poured into Teflon molds according to standard conditions. Thermo-analyzer sensor technology was used to measure thermal transfer (thermal conductivity, thermal flow, thermal diffusion, thermal energy and heat resistance). The thermal conductivity, flow, and thermal conductivity values were increased sequentially by increasing the weight ratio of the filler while the results of stored energy values an

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Mathematical Modelling And Numerical Optimisation
Reconstruction of an orthotropic thermal conductivity from non-local heat flux measurements
...Show More Authors

View Publication
Scopus (8)
Crossref (1)
Scopus Crossref
Publication Date
Sat Jul 28 2018
Journal Name
Journal Of Engineering
Experimental and Numerical Study Effect of Using Nanofluids in Perforated Plate Fin Heat Sink for Electronics Cooling
...Show More Authors

An experimental and numerical investigation of the effect of using two types of nanofluids with suspending of (Al2O3 and CuO) nanoparticles in deionized water with a volume fraction of (0.1% vol.), in addition to use three types of fin plate configurations of (smooth, perforated, and dimple plate) to study the heat transfer enhancement characteristics of commercial fin plate heat sink for cooling computer processing unit. All experimental tests under simulated conditions by using heat flux heater element with input power range of (5, 16, 35, 70, and 100 W). The experimental parameters calculated are such as water and nanofluid as coolant with Reynolds number of (7000, 8000, 9400 and 11300); the air

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Journal Of Engineering
Design, Construction, and Control Tracking of Solar Thermal Concentrator by Using PLC in Erbil
...Show More Authors

This paper demonstrates the construction designing analysis and control strategies for fully tracking concentrated solar thermal by using programmable logic control in the city of Erbil-Iraq. This work used the parabolic dish as a concentrated solar thermal. At the focal point, the collected form of energy is used for heating a (water) in the receiver, analyzing this prototype in real-time with two different shapes of the receiver and comparing the results. For tracking the parabolic dish, four light-dependent resistors are used to detect the sun's position in the sky so that the tracking system follows it to make the beam radiation perpendicular to the collector surface all of the time during the day for maximum solar p

... Show More
View Publication Preview PDF
Crossref