Adsorption capacity of a waste biomass, date stones, for phenolic compounds such as phenol (Ph) and p-nitro phenol (PNPh) was investigated. The characteristics of such waste biomass were determined and found to have a surface area and iodine number of 495.71 m²/g and 475.88 mg/g, respectively. The effects of temperature, initial sorbate concentration, and contact time on the adsorption process were studied. Experimental equilibrium data for adsorption of Ph and PNPh on date stones were analyzed by the Langmuir, Freundlich and Sips isotherm models. The results show that the best fit was achieved with the Sips isotherm equation with maximum adsorption capacities of 147.09 and 179.62 mg/g for Ph and PNPh, respectively. The kinetic data were fitted to pseudo-first order, pseudo-second order and intraparticle diffusion models, and was found to follow closely the pseudo-second order model for both Ph and PNPh. The calculated thermodynamic parameters, namely AG, AH, and AS showed that adsorption of Ph and PNPh onto date stones was spontaneous and endothermic under examined conditions.
Ferric oxide nanoparticles Fe3O4NPs have been prepared by the coprecipitation method, which were used to functionalize the surface of electrospun nanofibers of polyacrylonitrile to increase their effectiveness in adsorption of Congo red (CR) dye from their aqueous solutions. The effect factors of adsorption were systematically investigated such as adsorbent mass, initial concentration, contact time, temperature, ionic strength and pH. The maximum adsorbed amount of the dye was at 0.003g of adsorbent. The adsorption of dye increased with increasing initial dye concentration and the system reaches to the equilibrium state at 150 min. The adsorbed dye capacity decreases with increasing temperature which indicates to the exothermic nature of ad
... Show MoreElectrodeposition of metal oxides on graphite electrodes can improve their ability to remove organic substances. In this work, multicomponent oxides of Mn, Co, and Ni were electrochemically deposited on both the anode and cathode of graphite electrodes to enhance their performance in removing phenol. Formation of the deposit was achieved within 2 h in current densities of 20, 25, 30, and 35 mA/cm2 for better composite properties. The deposited layer was characterized by testing the surface structure, morphology, composition, and roughness. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and Atomic force microscopy (AFM) techniques facilitated these tests. The composite electrodes have synthesized
... Show MoreIn this study, the potential of adsorption of amoxicillin antibiotic (AMOX) from aqueous solutions using prepared activated carbon (AC) was studied. The used AC was prepared from an inexpensive and available precursor (sunflower seed hulls (SSH)) and activated by potassium hydroxide (KOH). The prepared AC was examined for its ability to remove AMOX from aqueous contaminated solutions and characterized with the aid of N2 -adsorption/desorption isotherm Brunauer–Emmett– Teller, scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier-transform infrared. Zeta potential of the prepared activated carbon from sunflower seed hulls (SSHAC) were studied in relation to AMOX adsorption. The physical and chemical propert
... Show MoreThe subject of this research involves studying adsorption to removal herbicide Atlantis WG from aqueous solutions by bentonite clay. The equilibrium concentration have been determined spectra photometry by using UV-Vis spectrophotometer. The experimental equilibrium sorption data were analyzed by two widely, Langmuir and Freundlish isotherm models. The Langmuir model gave a better fit than Freundlich model The adsorption amount of (Atlantis WG) increased when the temperature and pH decreased. The thermodynamic parameters like ?G, ?H, and ?S have been calculated from the effect of temperature on adsorption process, is exothermic. The kinetic of adsorption process was studied depending on Lagergren ,Morris ? Weber and Rauschenberg equati
... Show MoreManganese sulfate and Punica granatum plant extract were used to create MnO2 nanoparticles, which were then characterized using techniques like Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, atomic force microscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The crystal's size was calculated to be 30.94nm by employing the Debye Scherrer equation in X-ray diffraction. MnO2 NPs were shown to be effective in adsorbing M(II) = Co, Ni, and Cu ions, proving that all three metal ions may be removed from water in one go. Ni(II) has a higher adsorption rate throughout the board. Co, Ni, and Cu ion removal efficiencie
... Show MoreThis study includes using green or biosynthesis-friendly technology, which is effective in terms of low cost and low time and energy to prepare V2O5NPs nanoparticles from vanadium sulfate VSO4.H2O using aqueous extract of Punica Granatum at a concentration of 0.1M and with a basic medium PH= 8-12. The V2O5NPs nanoparticles were diagnosed using several techniques, such as FT-IR, UV-visible with energy gap Eg = 3.734eV, and the X-Ray diffraction XRD was calculated using the Debye Scherrer equation. It was discovered to be 34.39nm, Scanning Electron Microscope (SEM), Transmission Electron Microscopy TEM. The size, structure, and composition of synthetic V2O5
... Show MoreIn the present work, Response Surface Methodology (RSM) was utilized to optimize process variables and find the best circumstances for indirect electrochemical oxidation of mimicked wastewater to remove phenol contaminants using prepared ternary composite electrode. The electrodeposition process is used for the synthesis of a ternary composite electrode of Mn, Co, and Ni oxides. The selected concentrations of metal salts of these elements were 0.05, 0.1, and 1.5 M, with constant molar ratio, current density, and electrolysis time of 1:1:1, 25 mA/cm2, and 2 h. Interestedly, the gathered Mn-Co-Ni oxides were deposited at both the anode and cathode. X-ray diffraction (XRD) and scanning electron microscopy (SEM) facilitated the qualitative char
... Show More