In the 1980s, the French Administration Roads LCPC developed high modulus mixtures (EME) by using hard binder. This type of mixture presented good resistance to moisture damage and improved . mechanical properties for asphalt mixtures including high modulus, good fatigue behaviour and excellent resistance to rutting. In Iraq, this type of mixture has not been used yet. The main objective of this research is to evaluate the performance of high modulus mixtures and comparing them with the conventional mixture, to achieve this objective, asphalt concrete mixes were prepared and then tested to evaluate their engineering properties which include moisture damage, resilient modulus, permanent deformation and fatigue characteristics. These properties have been evaluated using indirect tensile strength, uniaxial repeated loading and repeated flexural beam tests. EME mixes were found to have improved fatigue and permanent deformation characteristics, also showed more resistance to moisture damage than conventional mix by 9.3 percent and the resilient modulus
at temperature 60 oC increased by 63 percent. The general theme viewed from the results of this study has added to local knowledge the ability to produce more durable asphalt concrete mixtures with better serviceability using EME mixes.
Solar energy is one of the immeasurable renewable energy in power generation for a green, clean and healthier environment. The silicon-layer solar panels absorb sun energy and converts it into electricity by off-grid inverter. Electricity is transferred either from this inverter or from transformer, consumed by consumption unit(s) available for residential or economic purposes. The artificial neural network is the foundation of artificial intelligence and solves many complex problems which are difficult by statistical methods or by humans. In view of this, the purpose of this work is to assess the performance of the Solar - Transformer - Consumption (STC) system. The system may be in complete breakdown situation due to failure of both so
... Show MoreHuman beings are starting to benefit from the technology revolution that witness in our time. Where most researchers are trying to apply modern sciences in different areas of life to catch up on the benefits of these technologies. The field of artificial intelligence is one of the sciences that simulate the human mind, and its applications have invaded human life. The sports field is one of the areas that artificial intelligence has been introduced. In this paper, artificial intelligence technology Fast-DTW (Fast-Dynamic Time Warping) algorithm was used to assess the skill performance of some karate skills. The results were shown that the percentage of improvement in the skill performance of Mai Geri is 100%.
Copper doped Zinc oxide and (n-ZnO / p-Si and n-ZnO: Cu / p-Si) thin films thru thickness (400±20) nm were deposited by thermal evaporation technique onto two substrates. The influence of different Cu percentages (1%,3% and 5%) on ZnO thin film besides hetero junction (ZnO / Si) characteristics were investigated, with X-ray diffractions examination supports ZnO films were poly crystal then hexagonal structural per crystallite size increase from (22.34 to 28.09) nm with increasing Cu ratio. The optical properties display exceptional optically absorptive for 5% Cu dopant with reduced for optically gaps since 3.1 toward 2.7 eV. Hall Effect measurements presented with all films prepared pure and doped have n-types conductive, with a ma
... Show MoreThe sensors based on Nickel oxide doped chromic oxide (NiO: Cr2O3) nanoparticals were fabricated using thick-film screen printing of sol-gel grown powders. The structural, morphological investigations were carried out using XRD, AFM, and FESEM. Furthermore, the gas responsivity were evaluated towards the NH3 and NO2 gas. The NiO0.10: Cr2O3 nanoparticles exhibited excellent response of 95 % at 100oC and better selectivity towards NH3 with low response and recovery time as compared to pure Cr2O3 and can stand as reliable sensor element for NH3 sensor related applications.
Many studies have been published to address the growing issues in wireless communication systems. Space-Time Block Coding (STBC) is an effective and practical MIMO-OFDM application that can address such issues. It is a powerful tool for increasing wireless performance by coding data symbols and transmitting diversity using several antennas. The most significant challenge is to recover the transmitted signal through a time-varying multipath fading channel and obtain a precise channel estimation to recover the transmitted information symbols. This work considers different pilot patterns for channel estimation and equalization in MIMO-OFDM systems. The pilot patterns fall under two general types: comb and block types, with
... Show MoreIn this work, we carried out an experimental study of thedusty
plasma by taking the dust material Fe3O4 with radius of the any grain
0.1μm - 0.5μm. In experiment we use air in the vacuum chamber
system under different low pressure (0.1-1) Torr. The results
illustrated that the present of dust particles in the air plasma did not
effect on Paschen minimum which is 0.5 without dust and with Fe3O4
dusty grains.
The effect of Fe3O4 dust particles on plasma parameters can be
notice in direct current system in glow discharge region. The plasma
parameters which were studied in this work represent plasma
potential, floating potential,electron saturation current, temperatu
This research deals with the financial reporting for the non-current assets impairment from the viewpoint of international accounting standards, especially IAS 36 "Impairment of assets”. The research problem focused on the non-compliance with the requirements of IAS 36 which would negatively affect the accounting information quality, and its characteristics, especially the relevance of accounting information, that confirms the necessity of having such information for the three sub-characteristics in order to be useful for the decisions of users represented