Thermal performance of closed wet cooling tower has been investigated experimentally and theoretically
in this work. The theoretical model based on heat and mass transfer equations and heat and mass transfer balance equations which are established for steady state case. A new small indirect cooling tower was used for conducting experiments. The cooling capacity of cooling tower is 1 kW for an inlet water temperature of 38oC, a water mass velocity 2.3 kg/m2.s and an air wet bulb temperature of 26oC. This study investigates the relationship between saturation efficiency, cooling capacity and coefficient of performance of closed wet cooling tower versus different operating parameters such wet-bulb temperature, variable air-spray water flow ratio and cooling water inlet temperature. Results indicate that the capacity and saturation efficiency was found close to the related experimental results. Good agreement was obtained between the theoretical results and experimental measurements for the performance of small cooling tower.
Abstract
Lightweight materials is used in the sheet metal hydroforming process, because it can be adapted to the manufacturing of complex structural components into a single body with high structural stiffness. Sheet hydroforming has been successfully developed in industry such as in the manufacturing of the components of automotive.The aim of this study is to simulate the experimental results ( such as the amount of pressure required to hydroforming process, stresses, and strains distribution) with results of finite element analyses (FEA) (ANSYS 11) for aluminum alloy (AA5652) sheets with thickness (1.2mm) before heat treatm
... Show MoreTitanium-dioxide (TiO2) nanoparticles suspended in water, and ethanol based fluids have been prepared using one step method and characterized by scanning electron microscopy (SEM), and UV–visible spectrophotometer. The TiO2 nanoparticles were added to base fluids with different volume concentrations from 0.1% to1.5% by dispersing the synthesized nanoparticles in deionized water and ethanol solutions. The effective thermal conductivity, viscosity and pH of prepared nanofluids at different temperatures from 15 to 30 oC were carried out and investigated. It was observed that the thermal conductivity, pH, and viscosity of nanofluids increases with the increase in TiO2 nanoparticle volume fraction
... Show MoreThe impact of mental training overlap on the development of some closed and open skills in five-aside football for middle school students, Ayad Ali Hussein, Haidar Abedalameer Habe
This paper presents a numerical analysis using ANSYS finite element program to simulate the reinforced concrete slabs with spherical voids. Six full-scale one way bubbled slabs of (3000mm) length with rectangular cross-sectional area of (460mm) width and (150mm) depth are tested as simply supported under two-concentrated load. The results of the finite element model are presented and compared with the experimental data of the tested slabs. Material nonlinearities due to cracking and crushing of concrete and yielding of reinforcement are considered. The general behavior of the finite element models represented by the load-deflection curves at midspan, crack pattern, ultimate load, load-concrete strain curves and failure m
... Show MoreAbstract
Heavy-duty diesel vehicle idling consumes fossil fuel and reduces atmospheric quality at idle period, but its restriction cannot simply be proscribed. A comprehensive tailpipe emissions database to describe idling impacts is not yet available. This paper presents a substantial data set that incorporates results from DI multi-cylinders Fiat diesel engine. Idle emissions of CO, hydrocarbon (HC), oxides of nitrogen (NOx), smoke opacity, carbon dioxide (CO2) and noise have been reported, when three EGR ratios (10, 20 and 30%) were added to suction manifold.
CO2 concentrations increased with increasing idle time and engine idle speed, but it didn’t show clear effect for IT adva
... Show MoreIn this experimental and numerical analysis, three varieties of under-reamed piles comprising one bulb were used. The location of the bulb changes from pile to pile, as it is found at the bottom, center, and top of the pile, respectively.
In this research, the performance of asphalt mixtures modified with polyethylene polymer (PE) by adding 2%, 4%, and 6% percentages was evaluated. Two kinds of PE are employed: Low-Density PE (LDPE) and High-Density PE (HDPE). The semi-wet mixing technique (SWM) was conducted to avoid stability issue for PE-modified binder during storage condition. Many experimental tests were conducted to evaluate the ability of these mixtures to withstand the effects of loads and moisture. The hardness index of these mixtures was also measured to determine their resistance to the effects of high temperatures without causing permanent deformations. The results showed that adding PE led to a remarkable enhancement in the performance of PE-modified mixtures.
... Show MoreIn this study, pebble bed as an absorber and storage material was placed in a south facing, flat plate air-type solar collector at fixed tilt angle of (45°). The effect of this material and differ- ent parameters on collector efficiency has been investigated experimentally and
theoretically. Two operation modes were employed to study the performance of the solar air heater. An inte- grated mode of continuous operation of the system during the period of (11:00 am – 3:00 pm) and non-integrated mode in which the system stored the solar energy through the day then used the stored energy during the period of (3:00 pm – 8:00 pm). The results of parametric study in case of continuous operating showed that the maximum average temperatur