In this research the effect of cooling rate and mold type on mechanical properties of the eutectic
and hypoeutectic (Al-Si) alloys has been studied. The alloys used in this research work were (Al- 12.6%Si
alloy) and (Al- 7%Si alloy).The two alloys have been melted and poured in two types of molds with
different cooling rates. One of them was a sand mold and the other was metal mold. Mechanical tests
(hardness, tensile test and impact test) were carried out on the specimens. Also the metallographic
examination was performed.
It has been found that the values of hardness for the alloys(Al-12.6%Si and Al-7%Si) which poured in
metal mold is greater than the values of hardness for the same alloy when it poured in a heated metal
mold at different temperatures or in sand mold. The strength and impact resistance for the alloys (Al-
12.6%Si and Al-7%Si) are greater when these were poured in a metal molds than that when it poured in a
sand mold.
Furthermore, the higher cooling rates enhance the strength, hardness and impact resistance for the
two alloys, while the low cooling rates reduces these mechanical properties.
The percentage of elongation and the amounts of formed porosity decreased when the cooling rates
increased
Praise be to God, Lord of the worlds, and peace and blessings be upon our master Muhammad and his family and companions as follows:
For God Almighty has swapped for every age a group of religious scholars who give news to the narrators, so that they can lie against the Sunnah of the Mustafa, who is among those who memorized Ibn Al-Mulqin, as he followed the ruler in his book Al-Badr Al-Munir in the Hadith of Al-Sharh Al-Kabeer, and our research included two topics, which we explained in the first topic: The sequels in which the teacher's son Al-Malqin disagreed, and we discussed in the second topic: the followings in which Ibn Al-Malqin agreed to rule.
This research included important results, th
Background: Dental implant surface technologies have been evolving rapidly to enhance a more rapid bone formation on their surface and improve implant therapy.Implant threads should be designed to increase surface contact areathat induced better stability. In addition, implant surface coating with Flaxseed was used to enhance bone formation at the bone-implant interface. Materials and methods: Ninety-six commercially pure titanium (CpTi) screws were implanted in rabbits' tibiae and divided into three groups as dual-threaded group, flaxseed-coated group and control group. All groups were evaluated mechanically, histologically and radiographically after each healing periods (2, 4, 6 and 8) weeks and the resulting data were statistically analy
... Show MoreIn this paper, the dynamic of quark and anti-quark interaction has been used to study the production of photons in the annihilation process based on the theory of chromodynamic. The rate of the photon is to be calculated for charm and anti-strange interaction c→γg system with critical temperature 113 and 130 MeV and photon energy GeV/c. Here the critical temperature, strength coupling and photons energy are assumed to be affected dramatically on the rate of photons emission of state interaction c, which can form gluon possible structures and photon emission state. The decreased photons emission yields with increased strength couple of quarks reaction due to increase critical temperature from 113 MeV to 130 MeV were predicted. We
... Show MoreAlO-doped ZnO nanocrystalline thin films from with nano crystallite size in the range (19-15 nm) were fabricated by pulsed laser deposition technique. The reduction of crystallite size by increasing of doping ratio shift the bandgap to IR region the optical band gap decreases in a consistent manner, from 3.21to 2.1 eV by increasing AlO doping ratio from 0 to 7wt% but then returns to grow up to 3.21 eV by a further increase the doping ratio. The bandgap increment obtained for 9% AlO dopant concentration can be clarified in terms of the Burstein–Moss effect whereas the aluminum donor atom increased the carrier's concentration which in turn shifts the Fermi level and widened the bandgap (blue-shift). The engineering of the bandgap by low
... Show MoreAbstract
The toughening of epoxy resins with the addition of organic or inorganic compounds is of great interest nowadays, considering their large scale of applications. In the present work, composites of epoxy are synthesized with kaolin particles having different particle sizes as reinforcement. Composites of epoxy with varying concentration (0 to 40 weight %) of kaolin was prepared by using hand lay method. The variation of mechanical properties such as modulus of elasticity, yield, tensile, and compressive strength with filler content was evaluated. The composite showed improved modulus of elasticity and compressive properties on addition of filler. In contrast, the tensile and yield strength of the composite
... Show MoreChemical bath deposition was used to synthesize ZnO nanorods (NRs) on glass and fluorine_doped tin oxide (FTO) substrates. X-ray diffraction was performed to examine the crystallinity of ZnO nanorod. Results showed that ZnO NRs had a wurtzite crystal structure. Field emission scanning electron microscopy images showed that glass sample had rod-like structure distribution with (50 nm) diameter and average length of approximately (700 nm), whereas the FTO-coated glass sample had 25 nm diameter and average length of approximately 950 nm. The direct optical transition band gaps of the glass and FTO_coated glass samples were( 4 and 4.43 eV), respectively. The structural and optical properties of the synthesized ZnO p
... Show MoreThe semiempirical (PM3) and DFT quantum mechanical methods were used to investigate the theoretical degradation of Indigo dye. The chemical reactivity of the Indigo dye was evaluated by comparing the potential energy stability of the mean bonds. Seven transition states were suggested and studied to estimate the actually starting step of the degradation reaction. The bond length and bond angle calculations indicate that the best active site in the Indigo dye molecule is at C10=C11. The most possible transition states are examined for all suggested paths of Indigo dye degradation predicated on zero-point energy and imaginary frequency. The first starting step of the reaction mechanism is proposed. The change in enthalpy, Gibbs free energ
... Show MoreThe charge transfer at C23H17F8N8O2PRu, C44H30BF4N5O4Ru, C56H52CL5N5OOsP2 and C76H88F80N24O11P10Ru4 nitrosyl complexes are investigation and studies theoretically using the quantum consideration. Charge transfer behavior largely rely to the electric properties of nitrosyl complexes system whose depending on the main important parameters for the transmission rate constant such that: orientation transition energy, overlapping coupling coefficient, driving force energy, height barrier and Temperature T (K). Data results have been evaluated using a MATLAB program. Results show that rate of charge transfer increases due to increases the orientation transition energy.
The present work initiated to eaIuate the efficiency of Al-Rustamivah sewage treatment plant
as reflected by the quality of final effluent that is thrown to Di ala river. Weekly samples of
wastewater and final effluent were collected between November 1994 and end of January
1995 and analyzed for different chemical and biological features. Results ha e inidicated that
Al-Rustamiyah sewage treatment plant could not be able efficiently to purify the raw sewage.
The mean values of suspended solids. BOD. COD Dichromate and Oil & grease effluents
were felt to pass standard limits (98.4. 92.8. 125.2 and 39.1 ppm. respectiel). The atherse
possible effects of pollution on Diuala equatic life hae been also discussed in res
The discus throwing event is one of the complex events in athletics, and it is characterized by a performance method that depends on the principle of mechanical moments and requires high explosive capabilities of the thrower in addition to some physical specifications,which depends effectively and effectively on the biomechanical aspects in generating large moments during rotation. The importance of the research is highlighted by the interest in athletics, especially the effectiveness of the discus throw and the continuation of its development process, the importance of kinetic analysis in revealing the most important weaknesses and strengths of shooters, and the importance of explosive power And the moments generated in the rotation of the
... Show More