In this research the effect of cooling rate and mold type on mechanical properties of the eutectic
and hypoeutectic (Al-Si) alloys has been studied. The alloys used in this research work were (Al- 12.6%Si
alloy) and (Al- 7%Si alloy).The two alloys have been melted and poured in two types of molds with
different cooling rates. One of them was a sand mold and the other was metal mold. Mechanical tests
(hardness, tensile test and impact test) were carried out on the specimens. Also the metallographic
examination was performed.
It has been found that the values of hardness for the alloys(Al-12.6%Si and Al-7%Si) which poured in
metal mold is greater than the values of hardness for the same alloy when it poured in a heated metal
mold at different temperatures or in sand mold. The strength and impact resistance for the alloys (Al-
12.6%Si and Al-7%Si) are greater when these were poured in a metal molds than that when it poured in a
sand mold.
Furthermore, the higher cooling rates enhance the strength, hardness and impact resistance for the
two alloys, while the low cooling rates reduces these mechanical properties.
The percentage of elongation and the amounts of formed porosity decreased when the cooling rates
increased
This research foxed on the effect of fire flame of different burning temperatures (300, 400 and 500)oC on the compressive strength of reactive powder concrete (RPC).The steady state duration of the burning test was (60)min. Local consuming material were used to mixed a RPC of compressive strength around (100) MPa. The tested specimens were reinforced by (3.0) cm hooked end steel fiber of (1100) MPa yield strength. Three steel fiber volume fraction were adopted in this study (0, 1.0and 1.5)% and two cooling process were included, gradual and sudden. It was concluding that increasing burning temperature decreases the residual compressive strength for RPC specimens of(0%) steel fiber volume fraction by (12.16, 19.46&24.49) and (18.20, 27.77 &3
... Show MoreThe aim of this paper is to investigate the effects of Nd:YAG laser shock processing (LSP) on micro-hardness and surface roughness of 86400Cu-Zn alloy. X-ray fluorescence technique was used to analyze the chemical composition of this alloy. LSP treatment was performed with a Q-switched Nd: YAG laser with a wavelength of 1064 nm. The results show that laser shock processing can significantly increase. The micro-hardness and surface roughness of the LSP-treated sample. Vickers diamond indenter was used to measure the micro-hardness of all samples with different laser pulse energy and the different number of laser pulses. It is found that the metal hardness can be significantly increased to more than 80% by increasing the laser energy and t
... Show MoreThe present study considers an influence of WS2 nanoparticles lubricants on physical characteristics of wrought Aluminium alloys. It is investigated parameters-performance relationship via tribological pin-on-disc tests, the pin is made of Aluminium alloys and the disk is made of AISI.1045, and the humidity was 70%. Oils with WS2 nanoparticles and without them reveal the loss rate of wear. In this study, the coefficient of friction (CoF) is reduced from 0.27 to 0.22 and the wear rate decreased from 0.128 x 10-6 Nm-1 to 0.107 x 10-6 Nm-1 at a load of 20 N. All worn surfaces were typically three types in wear mechanisms such as adhesive, abrasive, and oxidative wear. In addi
... Show MoreThis paper reports on the experimental study, which conducted a series of triaxial tests for the asphalt concrete using hydrated lime as a mineral additive. Three HMA mixes, prepared by the specification for wearing, levelling and base layers, were studied under three different temperatures. The test results have demonstrated that, compared with the control mixes excluding HL, the permanent deformation resistance of the HL modified mixes has significant improvement. The deformation has been reduced at the same load repetition number, meanwhile the flow number has been considerably increased. The degree of improvement in permanent deformation resistance using HL is more pronounced at high stress deviation states and high temperature.
... Show MoreAg2O (Silver Oxide) is an important p-type (in chasm to most oxides which were n-type), with a high conductivity semiconductor. From the optical absorbance data, the energy gap value of the Ag2O thin films was 1.93 eV, where this value substantially depends on the production method, vacuum evaporation of silver, and optical properties of Ag2O thin films are also affected by the precipitation conditions. The n-type and p-type silicon substrates were used with porous silicon wafers to precipitate ±125 nm, as thick Ag2O thin film by thermal evaporation techniques in vacuum and via rapid thermal oxidation of 400oC and oxidation time 95 s, then characterized by measurement of
... Show MoreThis paper studies the influence of temperature on the corrosion rate of coated AA6111 aluminum alloy used in vehicle bodies under static and vibration states. The vibration test system was collected laboratory and used for testing of five different types of paints (EASI, Numix, Lesonal, DENSO and Polaron paints) in the 5 % NaCl solution using immersion test method. Lesonal paint provided the best corrosion protection, while DENSO paints show large values of corrosion rate, other coatings exhibit moderate values. Model of paints corrosion was developed to characterize the corrosion processes occur at the surfaces. It is found that corrosion rate obtained at vibration cases is larger than static cases and vibration effect
... Show MoreAttempts were made to improve solubility and the liquisolid technology dissolving of medication flurbiprofen. Liquisolid pill was developed utilizing transcutol-HP, polyethylene glycol 400, Avecil PH 102 carrier material and Aerosil 200 layer coating material. Suitable excipient amounts were determined to produce liquisolid powder using a mathematical model. On the other hand, flurbiprofen tablet with the identical composition, directly compressed, was manufactured for comparison without the addition of any unvolatile solvent. Both powder combination characterizations and after-compression tablets were evaluated. The pure drug and physical combination, and chosen liquisolid tablets were studied in order to exclude interacting with t
... Show MoreResilient polymeric materials such as silicone elastomers are currently used for maxillofacial prostheses construction but the strength of these materials and their clinical performance need to be optimized with the addition of reinforcing fillers. This study investigates the effect of zirconia nanopowder addition on tear strength, tensile strength, elongation at break, Shore A hardness, surface roughness and cytotoxicity of VST-50 maxillofacial silicone. Silicone base was mixed with different amounts (1%, 2% and 3%) of zirconia nanopowder using a vacuum mixer. Silicone without filler was used as control for comparison. Scanning Electron Microscopy and Atomic Force Microscopy were utilized to assess the efficiency of high-shear vacuum mixin
... Show MoreMechanical rock properties are essential to minimize many well problems during drilling and production operations. While these properties are crucial in designing optimum mud weights during drilling operations, they are also necessary to reduce the sanding risk during production operations. This study has been conducted on the Zubair sandstone reservoir, located in the south of Iraq. The primary purpose of this study is to develop a set of empirical correlations that can be used to estimate the mechanical rock properties of sandstone reservoirs. The correlations are established using laboratory (static) measurements and well logging (dynamic) data. The results support the evidence that porosity and sonic travel time are consistent i
... Show MoreThe different parameters on mechanical and microstructural properties of aluminium alloy 6061-T6 Friction stir-welded (FSW) joints were investigated in the present study. Different welded specimens were produced by employing variable rotating speeds and welding speeds. Tensile strength of the produced joints was tested at room temperature and the the effecincy was assessed, it was 75% of the base metal at rotational speed 1500 rpm and weld speed 50 mm/min. Hardness of various zones of FSW welds are presented and analyzed by means of brinell hardness number . Besides to thess tests the bending properties investigat
... Show More