Preferred Language
Articles
/
joe-3040
ESTIMATION THE 7 AND 28- DAY NORMAL COMPRESSIVE STRENGTH BY ACCELERATED TEST METHODS IN CONCRETE

Curing of concrete is the maintenance of a satisfactory moisture content and temperature for a
period of time immediately following placing so the desired properties are developed. Accelerated
curing is advantages where early strength gain in concrete is important. The expose of concrete
specimens to the accelerated curing conditions which permit the specimens to develop a significant
portion of their ultimate strength within a period of time (1-2 days), depends on the method of the
curing cycle.Three accelerated curing test methods are adopted in this study. These are warm water,
autogenous and proposed test methods. The results of this study has shown good correlation
between the accelerated strength especially for the proposal curing test method and normal strength
using normal curing method at ages 7 and 28 day for the five different chemical composition of
cement with different water to cement ratios equal to 0.45, 0.55, 0.65 and 0.75. Linear and
nonlinear regression analysis show high correlation for the different types of the accelerated curing
methods with coefficient of correlation (R2) more than 0.9.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Aug 07 2020
Journal Name
Key Engineering Materials
Compressive Strength and Shrinkage Behavior of Concrete Produced from Portland Limestone Cement with Water Absorption Polymer Balls

From the sustainability point of view a combination of using water absorption polymer balls in concrete mix produce from Portland limestone cement (IL) is worth to be perceived. Compressive strength and drying shrinkage behavior for the mixes of concrete prepared by Ordinary Portland Cement (O.P.C) and Portland limestone cement (IL) were investigated in this research. Water absorbent polymer balls (WAPB) are innovative module in producing building materials due to the internal curing which eliminates autogenous shrinkage, enhances the strength at early age, improve the durability, give higher compressive strength at early age, and reduce the effect of insufficient external curing. Polymer balls (WAPB) had been used in the mixes of thi

... Show More
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Enhancing the Compressive Strength and Density of Cement Mortar by the Addition of Different Alignments of Glass Fibers and Styrene Butadiene Rubber

Abstract

In the field of construction materials the glass reinforced mortar and Styrene Butadiene mortar are modern composite materials. This study experimentally investigated the effect of addition of randomly dispersed glass fibers and layered glass fibers on density and compressive strength of mortar with and without the presence of Styrene Butadiene Rubber (SBR). Mixtures of 1:2 cement/sand ratio and 0.5 water/cement ratio were prepared for making mortar. The glass fibers were added by two manners, layers and random with weight percentages of (0.54, 0.76, 1.1 and 1.42). The specimens were divided into two series: glass-fiber reinforced mortar without SBR and glass-fiber reinforced mortar with 7% SBR of mixture water. All s

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Jan 01 2008
Journal Name
J Bagh College Of Dentistry
Assessment of consistency and compressive strength of glass ionomer reinforced by different amount of hydroxyapatite

Background: Glass ionomers have good biocompatibility and the ability to adhere to both enamel and dentin. However, they have certain demerits, mainly low tensile and compressive strengths. Therefore, this study was done to assess consistency and compressive strength of glass ionomer reinforced by different amount of hydroxyapatite. Materials and Methods: In this study hydroxyapatite materials were added to glass ionomer cement at different ratios, 10%, 15%, 20%, 25% and 30% (by weight). The standard consistency test described in America dental association (ADA) specification No. 8 was used, so that all new base materials could be conveniently mixed and the results would be of comparable value and the compressive strength test described by

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Thickening Time and Compressive Strength Correlations for Bentonitic- Class "G" Cement Slurries

Empirical equations for estimating thickening time and compressive strength of bentonitic - class "G" cement slurries were derived as a function of water to cement ratio and apparent viscosity (for any ratios). How the presence of such an equations easily extract the thickening time and compressive strength values of the oil field saves time without reference to the untreated control laboratory tests such as pressurized consistometer for thickening time test and Hydraulic Cement Mortars including water bath ( 24 hours ) for compressive strength test those may have more than one day.

View Publication Preview PDF
Publication Date
Mon Jan 01 2018
Journal Name
Springer Series In Geomechanics And Geoengineering
Scopus (20)
Crossref (15)
Scopus Crossref
Publication Date
Thu Mar 01 2018
Journal Name
Journal Of Engineering
Permeability Estimation by Using the Modified and Conventional FZI Methods

There many methods for estimation of permeability. In this Paper, permeability has been estimated by two methods. The conventional and modified methods are used to calculate flow zone indicator (FZI). The hydraulic flow unit (HU) was identified by FZI technique. This technique is effective in predicting the permeability in un-cored intervals/wells. HU is related with FZI and rock quality index (RQI). All available cores from 7 wells (Su -4, Su -5, Su -7, Su -8, Su -9, Su -12, and Su -14) were used to be database for HU classification. The plot of probability cumulative of FZI is used. The plot of core-derived probability FZI for both modified and conventional method which indicates 4 Hu (A, B, C and D) for Nahr Umr forma

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Feb 01 2022
Journal Name
Iraqi Journal Of Science
A Study of compression strength and flexural strength for Polymer Concrete

Polymer concrete were prepared by mixing epoxy resin with sand particles in three different grain size (150-300) , (300-600 ) and (600- 1200) μm respectively. The percentage of epoxy was 15%, 20 %, 25% and 30% wt of the total weight. Compression strength and flexural strength tests were carried out for the prepared samples.
The percentages of epoxy resin at 20% wt and 25% wt showed best mechanical properties for all grain sizes. These percentages were adopted to fill the voids between particles sand have two different size ranges (150-600) μm and {(150-300) & (600-1200)} μm respectively to obtain more dense material. The results showed that the strength of polymer composite at 20% resin is higher than 25% resin.

View Publication Preview PDF
Publication Date
Thu Oct 01 2015
Journal Name
Journal Of Engineering
The Effect of Recycled Heating and Cooling and The Effect of The Speciment Size on The Compressive Strength of Concrete Exposed To High Temperature

     In the present work effect of recycled heating and cooling on the values of concrete compressive strength due to high temperature of 4000C was studied.

    The tests show that the percent of reduction in compressive strength of the samples which exposed to a temperature of 4000C for one cycle was 32.5%, while the reduction was 52.7% for the samples which were exposed to recycled heating and cooling of ten times .      

   Moreover a study of the effect of specimen sizes on the percentages of compressive strength reduction due to high temperature

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 10 2019
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Influence of Accelerated Curing on Fiber Reinforced Concrete

The adopted accelerated curing methods in the experimental work are 55ºC and 82ºC according to British standard methods. The concrete mix with the characteristics compressive strength of 35MPa is design according to the ACI 211.1, the mix proportion is (1:2.65:3.82) for cement, fine and coarse aggregate, respectively. The concrete reinforced with different volume fraction (0.25, 0.5 and 0.75)% of glass, carbon and polypropylene fibers. The experimental results showed that the accelerated curing method using 82ºC gives a compressive strength higher than 55ºC method for all concrete mixes. In addition, the fiber reinforced concrete with 0.75% gives the maximum compressive strength, flexural and splitting tensile strength for all types of

... Show More
View Publication
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Engineering
Impact of Sulfate in the Sand on the Compressive Strength of Metakaolin-Based Geopolymer Mortar

The advancement of cement alternatives in the construction materials industry is fundamental to sustainable development. Geopolymer is the optimal substitute for ordinary Portland cement, which produces 80% less CO2 emissions than ordinary Portland cement. Metakaolin was used as one of the raw materials in the geopolymerization process. This research examines the influence of three different percentages of sulfate (0.00038, 1.532, and 16.24) % in sand per molarity of NaOH on the compressive strength of metakaolin-based geopolymer mortar (MK-GPM). Samples were prepared with two different molarities (8M and 12M) and cured at room temperature. The best compressive strength value (56.98MPa) was recorded with 12M w

... Show More
Crossref
View Publication Preview PDF