Several industrial wastewater streams may contain heavy metal ions, which must be effectively removal
before the discharge or reuse of treated waters could take place. In this paper, the removal of copper( II)
by foam flotation from dilute aqueous solutions was investigated at laboratory scale. The effects of
various parameters such as pH, collector and frother concentrations, initial copper concentration, air flow
rate, hole diameter of the gas distributor, and NaCl addition were tested in a bubble column of 6 cm inside
diameter and 120 cm height. Sodium dodecylsulfate (SDS) and Hexadecyl trimethyl ammonium bromide
(HTAB) were used as anionic and cationic surfactant, respectively. Ethanol was used as frothers and the
optimal removal conditions have been established. Successful removals about (98%) and (76%) could be
achieved for copper ions with SDS and HTAB, respectively. Copper removal reached about 80% under
the optimum conditions at low pH; at high pH it became as high as 98% probably due to the contribution
from the flotation of precipitated copper. It was found that the presence of NaCl in the solution reduced
the recoveries. Adding ethanol at 1% concentration increased the removal efficiency. From the results the
rate of flotation was found to be first order.
Investigation of the adsorption of acid fuchsin dye (AFD) on Zeolite 5A is carried out using batch scale experiments according to statistical design. Adsorption isotherms, kinetics and thermodynamics were demonstrated. Results showed that the maximum removal efficiency was using zeolite at a temperature of 93.68751 mg/g. Experimental data was found to fit the Langmuir isotherm and pseudo second order kinetics with maximum removal of about 95%. Thermodynamic analysis showed an endothermic adsorption. Optimization was made for the most affecting operating variables and a model equation for the predicted efficiency was suggested.
The present study was conducted to examine toxicological effects of copper sulfate (Cu) in common carp fish (Cyprinus carpio L.). The LC50 (median lethal concentrations) of copper on Cyprinus carpio were 3.64, 3.36, 3.04, 2.65 mg/L respectively. In general, behavioral responses of the fishes exposed to copper included uncontrolled swimming, erratic movements, loss of balance, swam near the water surface with sudden jerky movements. Haematological parameters such, red blood cells (RBC), white blood cells (WBC), haemoglobin (Hb), Packed cell volume (PCV), mean cell volume (MCV) mean cell haemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) were studied. The obtained results indicated that the (RBC) and (WBC) have increas
... Show MoreThis work aims to study the exploding copper wire plasma parameters by optical emission spectroscopy. The emission spectra of the copper plasma have been recorded and analyzed The plasma electron temperature (Te), was calculated by Boltzmann plot, and the electron density (ne) calculated by using Stark broadening method for different copper wire diameter (0.18, 0.24 and 0.3 mm) and current
of 75A in distilled water. The hydrogen (Hα line) 656.279 nm was used to calculate the electron density for different wire diameters by Stark broadening. It was found that the electron density ne decrease from 22.4×1016 cm-3 to 17×1016 cm-3 with increasing wire diameter from 0.18 mm to 0.3 mm while the electron temperatures increase from 0.741 to
The syntheses, characterization and experimental solid state X-ray structures of five low-spin paramagnetic 2-pyridyl-(1,2,3)-triazole-copper compounds, [Cu(Ln)2Cl2], are presented in this study, for the following five Ln ligands: L1 = 2-(1-(p-tolyl)-1H-(1,2,3-triazol-4-yl)pyridine), L2 = 2-(1-(4- chlorophenyl)-1H-(1,2,3-triazol-4-yl)pyridine), L3 = 4-(4-(pyridin-2-yl)-1H-(1,2,3-triazol-4-yl)benzonitril), L4 = 2-(1-phenyl-1H-(1,2,3-triazol-4-yl)pyridine) and L5 = 2-(1-(4-(trifluoromethyl)phenyl)-1H-(1,2,3- triazol-4-yl)pyridine). These five [Cu(Ln)2Cl2] complexes each contain two bidentate 2-pyridyl-(1,2,3)- triazole (Ln) and two chloride ions as ligands, with the Cu–N(pyridine) bonds, Cu–N(triazole) and Cu–Cl bonds trans to each othe
... Show MoreThis study aimed to investigate the feasibility of treatment actual potato chips processing wastewater in a continuously operated dual chambers microbial fuel cell (MFC) inoculated with anaerobic sludge. The results demonstrated significant removal of COD and suspended solids of more than 99% associated with relatively high generation of current and power densities of 612.5 mW/m3 and 1750 mA/m3, respectively at 100 Ω external resistance.
In this study, ultraviolet (UV), ozone techniques with hydrogen peroxide oxidant were used to treat the wastewater which is produced from South Baghdad Power Station using lab-scale system. From UV-H2O2 experiments, it was shown that the optimum exposure time was 80 min. At this time, the highest removal percentages of oil, COD, and TOC were 84.69 %, 56.33 % and 50 % respectively. Effect of pH on the contaminants removing was studied in the range of (2-12). The best oil, COD, and TOC removal percentages (69.38 %, 70 % and 52 %) using H2O2/UV were at pH=12. H2O2/ozone experiments exhibited better performance compared to
... Show MoreAeration system in the cultivation of Chlorella Sp. Microalgae using dairy wastewater as culture media was addressed in the current study. This research aimed to study the effect of aeration in the bubble column bioreactor on the biological synergy between microalgae and bacteria if they are present in the same place. The results show that the sterilization stage is not the dominant step in the success of microalgae cultivation in water-rich organic waste. There is a clear convergence between the growth rate of Chlorella microalgae in the sterilized and non-sterilized culture media, which gives realism if the proposal is applied industrially. Through the information obtained the aerobic bacteria in the non-sterilized me
... Show MoreTreated effluent wastewater is considered an alternative water resource which can provide an important contribution for using it in different purposes, so, the wastewater quality is very important for knowing its suitability for different uses before discharging it into fresh water ecosystems. The wastewater quality index (WWQI) may be considered as a useful and effective tool to assess wastewater quality by indicating one value representing the overall characteristic of the wastewater. It could be used to indicate the suitability of wastewater for different uses in water quality management and decision making. The present study was conducted to evaluate the Al-Diwaniyah sewage treatment plant (STP) effluent quality based on wastewa
... Show More 
        