Owing to the energy crisis and pollution problems of today, investigations have concentrated on
decreasing fuel consumption and on lowering the concentration of toxic components in combustion
products by using non-petroleum, renewable, sustainable and non-polluting fuels. While conventional energy sources such as natural gas, oil and coal are non-renewable, alcohol can be coupled to renewable and sustainable energy sources.
In this study, the combustion characteristics of diesel fuel and methanol blends were compared.
The tests were performed at steady state conditions in a four-cylinder DI diesel engine at full load at
1500-rpm engine speed. The experimental results showed that diesel methanol blends provided
12.7% increase in brake-specific fuel consumption due to its lower heating value. The results indicated that methanol may be blended with diesel fuel to be used without any modification on the engine.
The aim of this work is to study the effect of diesel fuel percentage on the combustion processes in compression ignition engine using dual – fuel (diesel and LPG).
The brake thermal efficiency increased with the increase of diesel fuel rate at low loads, and decreased when load increased. To get sufficient operation in engine fueled with dual fuel, it required sufficient flow rate of diesel fuel, if the engine fueled with insufficient diesel fuel erratic operation with miss fire cycles presented.
Dual-fuel operation at part load showed higher specific fuel consumption than straight diesl operation. At full loads, brake specific fuel consumption of duel fuel engine approaches that for diesel fuel values.
Acute myeloid leukemia (AML) is heterogeneous disorders originated from the abnormalities in the proliferation and maturation of myeloid progenitors in bone morrow. There is a clinical correlation between immunity engines and disease progression, but this relationship is not completely clear yet. This study was designed to assess the full immune response in Iraqi patients diagnosed with AML. Patients and healthy volunteers were divided into three groups: newly diagnosed untreated, under chemotherapy treatment patients and control group. A significant reduction were seen in C4 and IFN-γ levels in both untreated and treated groups with no significant difference between untreated and treated groups. On the other hand, IL-2 and IL-8 levels inc
... Show MoreGenerally fossil based fuels are used in internal combustion engines as an energy source.
Excessive use of fossil based fuels diminishes present reserves and increases the air pollution in
urban areas. This enhances the importance of the effective use of present reserves and/or to develop
new alternative fuels, which are environment friendly. Use of alternative fuel is a way of emission
control. The term “Alternative Gaseous Fuels” relates to a wide range of fuels that are in the
gaseous state at ambient conditions, whether when used on their own or as components of mixtures
with other fuels.
In this study, a single cylinder diesel engine was modified to use LPG in dual fuel mode to study
the performance, emis
The vortex rate sensor is a fluidic gyroscope with no moving parts and can be used in very difficult
conditions like radiation, high temperature and noise with minimum cost of manufacturing and
maintenance. A vortex rate sensor made of wood has been designed and manufactured to study
theoretically and experimentally its static performance .A rig has been built to carry out the study,
the test carried out with three different air flow rates (100, 150, and 200 l/min).The results show that
the relation between the differential pressure taken from the sensor pickoff points and the angular
velocity of the sensor was linear.The present work involved theoretical and experimental study of
vortex rate sensor static characteri
The vortex rate sensor is a fluidic gyroscope with no moving parts and can be used in very difficult conditions like radiation, high temperature and noise with minimum cost of manufacturing and maintenance. A vortex rate sensor made of wood has been designed and manufactured to study theoretically and experimentally its static performance .A rig has been built to carry out the study,
the test carried out with three different air flow rates (100, 150, and 200 l/min).The results show that the relation between the differential pressure taken from the sensor pickoff points and the angular velocity of the sensor was linear.The present work involved theoretical and experimental study of vortex rate sensor static characteristics .Vortex rat
Due to the dramatic environmental impact of sulfur emissions associated with the exhaust of diesel engines, last environmental regulations for ultra-low-sulfur diesel require a very deep desulfurization (up to 15 ppm), which cannot be met by the conventional hydrodesulfurization units alone. The proposed method involves a batch ultrasound-assisted oxidative desulfurization (UAODS) of a previously hydrotreated diesel (containing 480 ppm sulfur) so as to convert the residual sulfur-bearing compounds into their corresponding highly polar oxides, which can be eliminated easily by extraction with a certain highly polar solvent. The oxidizing system utilized was H2O2 as an oxidant, CH3COOH as a
... Show MorePhytoremediation is one of the methods to remove various types of pollutants from water and soil using plants. Salvinia molesta, an aquatic plant, is chosen in this study to determine its ability to degrade diesel as the pollutant in synthetic wastewater with different diesel concentrations (0, 8,700, 17,400, and 26,100 mg/L) for 14 days. Total petroleum hydrocarbon (TPH) has been used as an indicator to represent diesel concentration variation in wastewater. Degradation of TPH was 85.1% for diesel concentration of 8,700 mg/L, compared with only 53.9% in the corresponding control without plant. While, acute toxicity on S. molesta exposed in diesel concentrations of 17,400 and 26,100 mg/L was observed and eventually had
... Show MoreDue to the energy crisis and the stringent environmental regulations, diesel engines are offering good hope for automotive vehicles. However, a lot of work is needed to reduce the diesel exhaust emissions and give the way for full utilization of the diesel fuel’s excellent characteristics.
A kind of cetane number improver has been proposed and tested to be used with diesel fuel as ameans of reducing exhaust emissions. The addition of (2-ethylhexyl nitrate) was designed to raise fuel cetane number to three stages, 50, 52 and 55 compared to the used conventional diesel fuel whose CN was 48.5. The addition of CN improver results in the decre
... Show MoreThis research presents a study in ultra-desulfurization of diesel fuel produced from conventional hydro desulfurization process, using oxidation and solvent extraction techniques. Dibenzothiophene (DBT) was the organosulfur compound that had been detected in sulfur removal. The oxidation process used hydrogen peroxide as an oxidant and acetic acid as homogeneous catalyst . The solvent extraction process used acetonitrile (ACN) and N-methyl – 2 - pyrrolidone (NMP) as extractants . Also the effect of five parameters (stirring speed :150 , 250 , 350 , and 450) rpm, temperature (30 , 40 , 45 , and 50) oC, oxidant/simulated diesel fuel ratio (0.5 , 0.75 , 1 , and 1.5) , catalyst/oxidant ratio(0.125,0.25,0.5
... Show More