Trip generation is the first phase in the travel forecasting process. It involves the estimation of the
total number of trips entering or leaving a parcel of land per time period (usually on a daily basis);
as a function of the socioeconomic, locational, and land-use characteristics of the parcel.
The objective of this study is to develop statistical models to predict trips production volumes for a
proper target year. Non-motorized trips are considered in the modeling process. Traditional method
to forecast the trip generation volume according to trip rate, based on family type is proposed in
this study. Families are classified by three characteristics of population social class, income, and
number of vehicle ownership. The study area is divided into 10 sectors. Each sector is subdivided
into number of zones so; the total number of zones is 45 zones based on the administrative
divisions. The trip rate for the family is determined by sampling. A questionnaire is designed and
interviews are implemented for data collection from selected zones at Al-Karkh side of Baghdad
city. Two techniques have been used, full interview and home questionnaire. The questionnaire
forms are distributed in many institutes, intermediate, secondary and, commercial schools. The
developed models are total person trips /household, work trips /household, education trips/household, shopping and social/recreational trips/household and, person trips/person. These models are developed by using stepwise regression technique after the collected data being fed to SPSS software.
Results show that total persons trips/household are related to family size and structure variables
such as number of person more than 6 year age, number of male, total number of workers, total
number of students in the household, number of private vehicles. This model has coefficient of
determination equal to 0.669 for the whole study area. Also the results show that the home-based
work trips are related to number of worker in the household, number of male workers in the
household, number of female workers in the household and number of persons of (25-60) year age;
this model has coefficient of determination equal to 0.82 for the whole study area. Home-based
education trips are strongly related to number of students in the household and this model has
coefficient of determination equal to 0.90 for the whole study area
Type 2 diabetes mellitus (T2DM) became the most prevalent health problem. Almost half of the world's people are ignorant that have diabetes. Menopause occurs as an important alteration in women through which take place the change in sex hormones, distribution in fat،s body, and metabolism, altogether which participate in the metabolism disease such as type 2 diabetes mellitus. Several studies have appeared the association between the TCF7L2 gene and different diseases like type 2 diabetes mellitus (T2DM). This study aimed to detect the relation of the genetic variation polymorphism for the TCF7L2 gene (rs12255372 G/T) in Iraqi women menopausal with T2DM. The outcomes indicated the increased levels of biochemical characteristics including H
... Show MorePurpose Heavy metals are toxic pollutants released into the environment as a result of different industrial activities. Biosorption of heavy metals from aqueous solutions is a new technology for the treatment of industrial wastewater. The aim of the present research is to highlight the basic biosorption theory to heavy metal removal. Materials and methods Heterogeneous cultures mostly dried anaerobic bacteria, yeast (fungi), and protozoa were used as low-cost material to remove metallic cations Pb(II), Cr(III), and Cd(II) from synthetic wastewater. Competitive biosorption of these metals was studied. Results The main biosorption mechanisms were complexation and physical adsorption onto natural active functional groups. It is observed that
... Show MoreCombining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported
... Show MoreAssessing water quality provides a scientific foundation for the development and management of water resources. The objective of the research is to evaluate the impact treated effluent from North Rustumiyia wastewater treatment plant (WWTP) on the quality of Diyala river. The model of the artificial neural network (ANN) and factor analysis (FA) based on Nemerow pollution index (NPI). To define important water quality parameters for North Al-Rustumiyia for the line(F2), the Nemerow Pollution Index was introduced. The most important parameters of assessment of water variation quality of wastewater were the parameter used in the model: biochemical oxygen demand (BOD), chemical oxygen dem
Herein, we report designing a new Δ (delta‐shaped) proton sponge base of 4,12‐dihydrogen‐4,8,12‐triazatriangulene (compound
Background Fibroblast growth factor receptor 2 (FGFR2) and trinucleotide repeat-containing 9 (TNRC9) gene polymorphisms have been associated with some cancers. We aimed to assess the association of FGFR2 rs2981582 and TNRC9 rs12443621 polymorphisms with hepatocellular cancer risk. Methods One hundred patients with HCV-induced HCC, 100 patients with chronic HCV infection, and 100 controls were genotyped for FGFR2 rs2981582 and TNRC9 rs12443621 using allele-specific Real-Time PCR analysis. Results FGFR2 rs2981582 genotype TT was associated with increased risk of HCC when compared to controls (OR = 3.09, 95% CI = 1.24–7.68). However, it was significantly associated with a lower risk of HCC when using HCV patients as controls (OR =
... Show MoreThis study sought to investigate the impacts of big data, artificial intelligence (AI), and business intelligence (BI) on Firms' e-learning and business performance at Jordanian telecommunications industry. After the samples were checked, a total of 269 were collected. All of the information gathered throughout the investigation was analyzed using the PLS software. The results show a network of interconnections can improve both e-learning and corporate effectiveness. This research concluded that the integration of big data, AI, and BI has a positive impact on e-learning infrastructure development and organizational efficiency. The findings indicate that big data has a positive and direct impact on business performance, including Big
... Show More