A numerical study has been carried out to investigate heat transfer by natural convection and radiation under the effect of magnetohydrodynamic (MHD) for steady state axisymmetric twodimensional laminar flow in a vertical cylindrical channel filled with saturated porous media. Heat is generated uniformly along the center of the channel with its vertical surface remain with cooled constant wall temperature and insulated horizontal top and bottom surfaces. The governing equations which used are continuity, momentum and energy equations which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7 programming. The parameters affected on the system are Rayleigh number ranging within (102 ≤Ra≤104), radiation parameter (0 ≤Rd≤2) and MHD (Mn) (0 ≤Mn≤2). The results obtained are presented graphically in the form of streamline and isotherm contour plots and the results show that heat transfer enhanced by radiation effect but decrease with the increase of magnetohydrodynamic. A correlation has been set up to give the average Nusselt number variation with Ra, Rd and Mn for which the results are found to be in good agreement with previously published researches which give maximum deviation of 3.73% when compared with the results of (Prasad, 1989).
This study was done to test the activity of some plant extracts as antioxidant agents. The plants were (Morus rubra, Hibiscus sabdariffa L ., Rhus coriaria L., Anethum graveolens and Petroselinum sativum).
Ethanolic 98% (24 hours/ 25˚c) and distilled water (30 minutes/ 25˚c have been used for extraction.The Total phenols, total flavonoids, total anthocyanin, antioxidant activities were studied.
The extract of Morus rubra was chosen because it has a higher antioxidant activity.
The phenolic extract of Morus rubra was prepare and examined by application it in burger . The antioxidant activity test of Morus rubra was made before and after 3,6 days of cold storage. The sensory evaluation of all treatments were done within 5,1
The present work aims to investigate the aerodynamic characteristics of the winglet cant angle of Boeing 737-800 wing numerically and experimentally. The wing contain two swept angles 38.3o and 29.13o respectively, taper ratio 0.15 and aspect ratio 8.04. The wing involves three types of airfoils sections. Four cant angles for blended winglet have been considered (0o, 34o, 60o, 83.3o). The winglet has been analyzed to find the best cant angle for the wing without and with winglet. These models have been tested theoretically at Reynolds number of 2.06 x106 in order to study the winglet aerodynamic characteristics which consist of coefficient of Drag, coefficient of lift and Lift to drag ratio, pitching moment coefficient and bending moment co
... Show MoreThe experimental and numerical analysis was performed on pipes suffering large plastic deformation through expanding them using rigid conical shaped mandrels, with three different cone angles (15◦, 25◦, 35◦) and diameters (15, 17, 20) mm. The experimental test for the strain results investigated the expanded areas. A numerical solution of the pipes expansion process was also investigated using the commercial finite element software ANSYS. The strains were measured for each case experimentally by stamping the mesh on the pipe after expanding, then compared with Ansys results. No cracks were generated during the process with the selected angles. It can be concluded that the strain decreased with greater angles of con
... Show MoreDetermining the aerodynamic characteristics of iced airfoil is an important step in aircraft design. The goal of this work is to study experimentally and numerically an iced airfoil to assess the aerodynamic penalties associated with presence of ice on the airfoil surface. Three iced shapes were tested on NACA 0012 straight wing at zero and non-zero angles of attack, at Reynolds No. equal to (3.36*105). The 2-D steady state continuity and momentum equations have been solved utilizing finite volume method to analyze the turbulent flow over a clean and iced airfoil. The results show that the ice shapes affected the aerodynamic characteristics due to the change in airfoil shape. The experimental results show that the horn iced airfoil
... Show MoreThis study deals with the aircraft wing analysis (numerical and experimental) which subjected to fatigue loading in order to analyze the aircraft wing numerically by using ANSYS 15.0 software and experimentally by using loading programs which effect on fatigue test specimens at laboratory to estimate life of used metal (aluminum alloy 7075-T651) the wing metal and compare between numerical and experimental work, as well as to formulate an experimental mathematical model which may find safe estimate for metals and most common alloys that are used to build aircraft wing at certain conditions. In experimental work, a (34) specimen of (aluminum alloy 7075-T651) were tested using alternating bending fatigue machine rig. The t
... Show MoreThe wave functions of the coherent states of the charged oscillator in magnetic field are obtained via a canonical transformation. The numerical calculations of these functions are made and then the space and time plots are obtained. It was shown that these states are Gaussians distributions of widths vary periodically in an opposite way with their peaks. We interpret that is due to the mutual actions of the spreading effect of the wave packet and the reaction of the magnetic field.
Twelve samples of cigarettes have been collected from local markets of different types and origins by using (HPGe) detector, and measurement of the specific activity for series U238 and series Th232 in addition to K40 in order to estimate the health risk of cigarettes their by smokers, the results shown that highest specific activity value were be (12. 8±6. 3 Bq/kg, 8. 41±5. 8 Bq/kg, 125. 16±58. 3 Bq/kg), respectively, in the sample (MAC) MacBeth type cigarettes in Brazilian origin, this paper reports data such as (specific activity of K40, series U238, series Th232