Preferred Language
Articles
/
joe-3027
NUMERICAL INVESTIGATION OF NATURAL CONVECTION RADIATION AND MAGNETOHYDRODYNAMIC IN VERTICAL POROUS CYLINDRICAL CHANNEL
...Show More Authors

A numerical study has been carried out to investigate heat transfer by natural convection and radiation under the effect of magnetohydrodynamic (MHD) for steady state axisymmetric twodimensional laminar flow in a vertical cylindrical channel filled with saturated porous media. Heat is generated uniformly along the center of the channel with its vertical surface remain with cooled constant wall temperature and insulated horizontal top and bottom surfaces. The governing equations which used are continuity, momentum and energy equations which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7 programming. The parameters affected on the system are Rayleigh number ranging within (102 ≤Ra≤104), radiation parameter (0 ≤Rd≤2) and MHD (Mn) (0 ≤Mn≤2). The results obtained are presented graphically in the form of streamline and isotherm contour plots and the results show that heat transfer enhanced by radiation effect but decrease with the increase of magnetohydrodynamic. A correlation has been set up to give the average Nusselt number variation with Ra, Rd and Mn for which the results are found to be in good agreement with previously published researches which give maximum deviation of 3.73% when compared with the results of (Prasad, 1989).

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 30 2002
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Convective Heat Transfer of Fluid Flowing Across a Vertical Plate
...Show More Authors

View Publication Preview PDF
Publication Date
Wed Dec 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Mixed convection in an Horizontal Rectangular Duct Including interior Circular Core with Time periodic Boundary Condition
...Show More Authors

Numerical Investigation was done for steady state laminar mixed convection and thermally and hydrodynamic fully developed flow through horizontal rectangular duct including circular core with two cases of time periodic boundary condition, first case  on the rectangular wall while keeping core wall constant and other on both the rectangular duct and core walls. The used governing equations are continuity momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function and the Body Fitted Coordinates (B.F.C.) methods. The Finite Difference approach with the Line Successive Over Relaxation (LSOR) method is used to obtain all the computational results the (B.F.C.) method is used to generate th

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
Studying the Magnetohydrodynamics for Williamson Fluid with Varying Temperature and Concentration in an Inclined Channel with Variable Viscosity
...Show More Authors

        In this paper, the Magnetohydrodynamic (MHD) for Williamson fluid with varying temperature and concentration in an inclined channel with variable viscosity has been examined. The perturbation technique in terms of the Weissenberg number  to obtain explicit forms for the velocity field has been used. All the solutions of physical parameters of the Darcy parameter , Reynolds number , Peclet number  and Magnetic parameter  are discussed under the different values as shown in plots.

View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Mon Sep 16 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Peristaltic Flow of the Bingham Plastic Fluid in a Curved Channel
...Show More Authors

    In this paper, we study the peristaltic transport of incompressible Bingham plastic fluid in a curved channel. The formulation of the problem is presented through, the regular perturbation technique for small values of  is used to find the final expression of stream function. The numerical solution of pressure rise per wave length is obtained through numerical integration because its analytical solution is impossible. Also the trapping phenomenon is analyzed. The effect of the variation of the physical parameters of the problem are discussed and illustrated graphically.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Oct 02 2018
Journal Name
Iraqi Journal Of Physics
Sensitivity of gold nanoparticles doped in porous silicon
...Show More Authors

In this work gold nanoparticles (AuNPs), were prepared. Chemical method (Seed-Growth) was used to prepare it, then doping AuNPs with porous silicon (PS), used silicon wafer p-type to produce (PS) the processes doping achieved by electrochemical etching, the solution etching consist of HF, ethanol and AuNPs suspension, the result UV-visible absorption for AuNPs suspension showed the single peak located at ~(530 – 521) nm that related to SPR, the single peak is confirmed that the NPs present in the suspension is spherical shape and non-aggregated. X-ray diffraction analysis indicated growth AuNPs with PS. compare the PS layer without AuNPs and with AuNPs doped for electrical properties and sensitivity properties we found AuNPs:PS is more

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
DISSOLUTION OF BENZENE IN THE SATURATED POROUS MEDIA
...Show More Authors

The aim of the present research is to study the dissolution and transport process of
benzene as a light nonaqueous phase liquid (LNAPL) in saturated porous media.
Unidirectional flow at water velocities ranged from 0.90 to 3.60 cm/hr was adopted to study
this process in a three dimensional saturated sand tank (100 cm×40 cm×35 cm). This tank
represents a laboratory-scale aquifer. The aquifer was constructed by packing homogeneous
sand in the rectangular tank. The experimental results were used to characterize the
dissolution behavior of an entrapped nonaqueous phase benzene source in a three dimensional
aquifer model. The time invariant average mass transfer coefficient was determined at each
interstitial velocit

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Aug 01 2020
Journal Name
Heat Transfer
A parametric study of a photovoltaic panel with cylindrical fins under still and moving air conditions in Iraq
...Show More Authors

Scopus (6)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Journal Of Engineering
Directive and Steerable Radiation Pattern using SASPA Array
...Show More Authors

This work examines the ability of a special type of smart antenna array known as Switched Active Switched Parasitic Antenna (SASPA) to produce a directive and electronically steerable radiation pattern. The SASPA array consists of antenna elements that are switchable between active and parasitic states by using P-Intrinsic-N (PIN) diodes. The active element is the element that is supplied by the radio frequency while short-circuiting the terminals of an element in the array results in a parasitic element. Due to the strong mutual coupling between the elements, a directional radiation pattern with high gain and a small beamwidth can be produced with only one active element operating at a time. By changing the parasitic state to the active

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Evaluation of Convective Heat Transfer and Natural Circulation in an Evacuated Tube Solar Collector
...Show More Authors

The evacuated tube solar collector ETC is studied intensively and extensively by experimental and
theoretical works, in order to investigate its performance and enhancement of heat transfer, for Baghdad climate
from April 2011 till the end of March 2012. Experimental work is carried out on a well instrumented collector
consists of 16 evacuated tubes of aspect ratio 38.6 and thermally insulated tank of volume 112L. The relation
between convective heat transfer and natural circulation inside the tube is estimated, collector efficiency, effect of
tube tilt angles, incidence angle modifier, The solar heating system is investigated under different loads pattern (i.e
closed and open flow) to evaluate the heat loss coefficient

... Show More
View Publication Preview PDF
Crossref (15)
Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Journal Of Engineering
Effect of Air Bubbles on Heat Transfer Coefficient in Turbulent Convection Flow
...Show More Authors

Experimental and numerical studies have been conducted for the effect of injected air bubbles on the heat transfer coefficient through the water flow in a vertical pipe under the influence of uniform heat flux. The investigated parameters were water flow rate of (10, 14 and 18) lit/min, air flow rate of (1.5, 3 and 4) lit/min for subjected heat fluxes of (27264, 36316 and 45398) W/m2. The energy, momentum and continuity equations were solved numerically to describe the motion of flow. Turbulence models k-ε was implemented. The mathematical model is using a CFD code Fluent (Ansys15). The water was used as continuous phase while the air was represented as dispersed. phase. The experimental work includes design, build and instrument a test

... Show More
View Publication Preview PDF