In this paper, an algorithm for reconstruction of a completely lost blocks using Modified
Hybrid Transform. The algorithms examined in this paper do not require a DC estimation
method or interpolation. The reconstruction achieved using matrix manipulation based on
Modified Hybrid transform. Also adopted in this paper smart matrix (Detection Matrix) to detect
the missing blocks for the purpose of rebuilding it. We further asses the performance of the
Modified Hybrid Transform in lost block reconstruction application. Also this paper discusses
the effect of using multiwavelet and 3D Radon in lost block reconstruction.
Nowadays, still images are used everywhere in the digital world. The shortages of storage capacity and transmission bandwidth make efficient compression solutions essential. A revolutionary mathematics tool, wavelet transform, has already shown its power in image processing. The major topic of this paper, is improve the compresses of still images by Multiwavelet based on estimation the high Multiwavelet coefficients in high frequencies sub band by interpolation instead of sending all Multiwavelet coefficients. When comparing the proposed approach with other compression methods Good result obtained
Speech is the first invented way of communication that human used age before the invention of writing. In this paper, proposed method for speech analyses to extract features by using multiwavelet Transform (Repeated Row Preprocessing).The proposed system depends on the Euclidian differences of the coefficients of the multiwavelet Transform to determine the beast features of speech recognition. Each sample value in the reference file is computed by taking the average value of four samples for the same data (four speakers for the same phoneme). The result of the input data to every frame value in the reference file using the Euclidian distance to determine the frame with the minimum distance is said to be the "Best Match". Simulatio
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreThe use of Cosine transform to analyze the model-noise pattern alteration with different vibration model applied on multimode fiber optics are studied. It's results compared with the Fourier transform to perform the same analysis using total frequency difference and the computation time, which almost coincide for the both transforms. A discussion for the results and recommendation are introduced.
This paper presents a method of designing and constructing a system capable of acquiring
the third dimension and reconstructs a 3D shape for an object from multi images of that object using
the principle of active optical triangulation. The system consists of an illumination source, a photo
detector, a movement mechanism and a PC, which is working as a controlling unit for the hard ware
components and as an image processing unit for the object multi view raw images which must be
processed to extract the third dimension. The result showed that the optical triangulation method
provides a rapid mean for obtaining accurate and quantitative distance measurements. The final
result's analysis refers to the necessity of usin
In this paper a new fusion method is proposed to fuse multiple satellite images that are acquired through different electromagnetic spectrum ranges to produce a single gray scale image. The proposed method based on desecrate wavelet transform using pyramid and packet bases, the fusion process preformed using two different fusion rules, where the low frequency part is remapped through the use of PCA analysis basing on covariance matrix and correlation matrix, and the high frequency part is fused using different fusion rules (adding, selecting the higher, replacement), then the restored image is obtained by applying the inverse desecrate wavelet transform. The experimental results show the validity of the proposed fusion method to fuse suc
... Show MoreThe multi-focus image fusion method can fuse more than one focused image to generate a single image with more accurate description. The purpose of image fusion is to generate one image by combining information from many source images of the same scene. In this paper, a multi-focus image fusion method is proposed with a hybrid pixel level obtained in the spatial and transform domains. The proposed method is implemented on multi-focus source images in YCbCr color space. As the first step two-level stationary wavelet transform was applied on the Y channel of two source images. The fused Y channel is implemented by using many fusion rule techniques. The Cb and Cr channels of the source images are fused using principal component analysis (PCA).
... Show MoreQuantitative analysis of human voice has been subject of interest and the subject gained momentum when human voice was identified as a modality for human authentication and identification. The main organ responsible for production of sound is larynx and the structure of larynx along with its physical properties and modes of vibration determine the nature and quality of sound produced. There has been lot of work from the point of view of fundamental frequency of sound and its characteristics. With the introduction of additional applications of human voice interest grew in other characteristics of sound and possibility of extracting useful features from human voice. We conducted a study using Fast Fourier Transform (FFT) technique to analy
... Show MoreSome problems want to be solved in image compression to make the process workable and more efficient. Much work had been done in the field of lossy image compression based on wavelet and Discrete Cosine Transform (DCT). In this paper, an efficient image compression scheme is proposed, based on a common encoding transform scheme; It consists of the following steps: 1) bi-orthogonal (tab 9/7) wavelet transform to split the image data into sub-bands, 2) DCT to de-correlate the data, 3) the combined transform stage's output is subjected to scalar quantization before being mapped to positive, 4) and LZW encoding to produce the compressed data. The peak signal-to-noise (PSNR), compression ratio (CR), and compression gain (CG) measures were used t
... Show More