Preferred Language
Articles
/
joe-3021
MECHANISTIC EVALUATION OF LIME-MODIFIED ASPHALT CONCRETE MIXTURES

Frequently, Load associated mode of failure (rutting and fatigue) as well as, occasionally, moisture damage in some sections poorly drained are the main failure types found in some of the newly constructed road within Baghdad as well as other cities in Iraq. The use of hydrated lime in pavement construction could be one of the possible steps taken in the direction of improving pavement performance and meeting the required standards. In this study, the mechanistic properties of asphalt concrete mixes modified with hydrated lime as a partial replacement of limestone dust mineral filler were evaluated. Seven replacement rates were used; 0,0.5, 1, 1.5, 2, 2.5 and 3 percent by weight of aggregate. Asphalt concrete mixes were prepared at their optimum asphalt content and then tested to evaluate their engineering properties which include moisture damage, resilient modulus, permanent deformation and fatigue characteristics. These properties have been evaluated using indirect tensile strength, uniaxial repeated loading and repeated flexural beam tests. Mixes modified with hydrated lime were found to have improved fatigue and permanent deformation characteristics, also showed lower moisture susceptibility and high resilient modulus. The use of 2 percent hydrated lime as a partial replacement of mineral filler has added to local knowledge the ability to produce more durable asphalt concrete mixtures with better serviceability.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Feb 12 2022
Journal Name
Engineering, Technology & Applied Science Research
The Possibility of Minimizing Rutting Distress in Asphalt Concrete Wearing Course

The excessive permanent deformation (rutting) in asphalt-concrete pavements resulting from frequent repetitions of heavy axle loads is studied in this paper. Rutting gradually develops with additional load applications and appears as longitudinal depressions in the wheel path. There are many causes of the rutting of asphalt roads, such as poor asphalt mixing and poor continuous aggregate gradation. All factors affecting the mixture resistance to permanent deformation must be discussed, and all must be properly considered to reduce the rutting propensity of asphalt-aggregate mixtures. In this study, several mixtures were produced with the most common techniques in rutting resistance (using the most effective additives for each mixture), and

... Show More
Crossref (11)
Crossref
View Publication Preview PDF
Publication Date
Mon Feb 01 2021
Journal Name
Journal Of Engineering
Assessing the Moisture and Aging Susceptibility of Cold Mix Asphalt Concrete

Laboratory experience in Iraq with cold asphalt concrete mixtures is very limited. The design and use of cold mixed asphalt concrete had no technical requirements. In this study, two asphalt concrete mixtures used for the base course were prepared in the laboratory using conventional cold-mixing techniques to test cold asphalt mixture (CAM) against aging and moisture susceptibility. Cold asphalt mixtures specimens have been prepared in the lab with cutback and emulsion binders, different fillers, and curing times. Based on the Marshal test result, the cutback proportion was selected with the filler, also based on the Marshal test emulsion. The first mixture was medium setting cationic emulsion (MSCE) as a binder, hydrate

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Tue Sep 01 2015
Journal Name
Journal Of Engineering
Impact of Aggregate Gradation and Filler Type on Marshall Properties of Asphalt Concrete

As asphalt concrete wearing course (ACWC) is the top layer in the pavement structure, the material should be able to sustain stresses caused by direct traffic loading. The objective of this study is to evaluate the influence of aggregate gradation and mineral filler type on Marshall Properties.  A detailed laboratory study is carried out by preparing asphalt mixtures specimens using locally available materials including asphalt binder (40-50) penetration grade, two types of aggregate gradation representing SCRB and ROAD NOTE 31 specifications and two types of  mineral filler including limestone dust and coal fly ash. Four types of mixtures were prepared and tested. The first type included SCRB specification and

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 10 2019
Journal Name
Journal Of Engineering And Applied Sciences
Rutting Resistance Potential of High Modulus Asphalt Concrete Pavements

The High Modulus Asphalt Concrete Mixture (HMACM) or (EME) (Enrobes a Module Eleve) developed in France, since, 1980 by Laboratories Central des Ponts et Chaussees (LCPC). Due to the increasing in traffic intensity and axle loading this type of mixing were suitable for pavement subjected to heavy duty. Experiments showed that EME mixtures have an excellent moisture damage resistance permanent deformation, fatigue cracking and reducing costs of maintenance and a significant reduction in thickness of pavement. Because of the high stiffness of EME mixes, the stresses transformed to the bottom laid layer by repeated traffic wheel loads were reduced effectively. This study intend to focus the light into the possibility of producing asphalt mixtu

... Show More
Crossref
Publication Date
Wed Jun 30 2021
Journal Name
Scientific Review Engineering And Environmental Sciences
Mesoscale modeling of fracture in cement and asphalt concrete

In this paper, mesoscale modeling is performed to simulate and understand fracture behavior of two concrete composites: cement and asphalt concrete using disk-shaped compact tension (DCT) tests. Mesoscale models are used as alternative to macroscale models to obtain better realistic behavior of composite and heterogeneous materials such as cement and asphalt concrete. In mesoscale models, aggregate and matrix are represented as distinct materials and each material has its characteristic properties. Disk-shaped compact tension test is used to obtain tensile strength and fracture energy of materials. This test can be used as a better alternative to other tests such as three points bending tests because it is more convenient for both field and

... Show More
Scopus (1)
Scopus Crossref
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Engineering
Impact of Preparing HMA with Modified Asphalt Cement on Moisture and Temperature Susceptibility

Many researchers tried to prevent or reduce moisture damage and its sensitivity to temperature to improving the performance of hot mix asphalt because it is decreasing the functional and structural life of fixable pavement due to the moisture damage had exposed to it.

The main objective of this study is to inspect the effect of (fly ash “3%, 6%, 12%”, hydrated lime”5%, 10%, 20%” and silica fumes”1%, 2%, 4%) referring to previous research by the net weight asphalt cement as a modified material on the moisture and temperature sensitivity of hot mix asphalt. This was done using asphalt from AL-Nasiria refinery with penetration grade 40-50, nominal maximum size (12.5) mm (surface course) of aggregate and on

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 08 2024
Journal Name
Engineering, Technology & Applied Science Research
Mitigating Reflection Cracking in Asphalt Concrete Overlays with ECC and Geotextile

The rehabilitation of deteriorated pavements using Asphalt Concrete (AC) overlays consistently confronts the reflection cracking challenge, where inherent cracks and joints from an existing pavement layer are mirrored in the new overlay. To address this issue, the current study evaluates the effectiveness of Engineered Cementitious Composite (ECC) and geotextile fabric as mitigation strategies. ECC, characterized by its tensile ductility, fracture resistance, and high deformation capacity, was examined in interlayer thicknesses of 7, 12, and 17 mm. Additionally, the impact of geotextile fabric positioning at the base and at 1/3 depth of the AC specimen was explored. Utilizing the Overlay Testing Machine (OTM) for evaluations, the research d

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Cogent Engineering
Influence of recycled concrete aggregate treatment methods on performance of sustainable warm mix asphalt

his study aimed to investigate the usability of Recycled Concrete Aggregate (RCA) in warm mix asphalt (WMA) as the implementation of sustainable construction technology. Five replacement rates (0%, 25%, 50%, 75%, and 100%) were tested for the coarse fraction of virgin aggregate (VA) with 3 types of RCA: untreated RCA, HL-treated RCA, and HCL-treated RCA. Scanning electron microscopy (SEM) analyses were performed to investigate the surface morphology for both treated and untreated RCA. The optimum asphalt cement content for every substitution rate was determined using Marshall mix design method. Thereafter, asphalt concrete specimens were prepared using the optimum asphalt cement content, followed by the evaluation of their performance prope

... Show More
Crossref (14)
Crossref
View Publication
Publication Date
Sun Sep 01 2019
Journal Name
10.31272/jeasd.23.5.9
EVALUATION OF HOT MIX ASPHALT CONTAINING RECLAIMED ASPHALT PAVEMENT TO RESIST MOISTURE DAMAGE

Due to increasing cost of asphalt binder, significant economic savings can be realized by using the amount from reclaimed asphalt pavement (RAP) in the production of new hot mix asphalt (HMA). Moreover, this is an environmentally friendly option as it reduces the demand for virgin materials. It has to be remarked that in Iraq RAP is not used in the production of HMA and this valuable material is mostly degraded for use in lower value applications. Four mixtures were designed, which contains three different percent RAP, it is (0%, 5%, 15%) with asphalt grade (40-50) and (25%) with asphalt grade (60-70), it has been changed the grade of asphalt when adding RAP (25%) to compensate for the aged binder in the RAP when adding to mixture. All type

... Show More
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Sat May 01 2021
Journal Name
Civil Engineering Journal
The Suitability of Bailey Method for Design of Local Asphalt Concrete Mixture

The study investigated the behaviour of asphalt concrete mixes for aggregate gradations, according to the Iraqi specification using the Bailey method designed by an Excel spreadsheet. In mixing aggregates with varying gradations (coarse and fine aggregate), The Bailey method is a systematic methodology that offers aggregate interlocking as the backbone of the framework and a controlled gradation to complete the blends. Six types of gradation are used according to the bailey method considered in this study. Two-course prepared Asphalt Concrete Wearing and Asphalt Concrete binder, the Nominal Maximum Aggregate Sizes (NMAS) of the mixtures are 19 and 12.5 mm, respectively. The total number of specimens was 240 for both layers (15 samp

... Show More
Crossref (1)
Crossref
View Publication Preview PDF