The present work divided into two parts, first the experimental side which included the
measuring of the first natural frequency for the notched and unnotched cantilever composite beams
which consisted of four symmetrical layers and made of Kevlar- epoxy reinforced. A numerical
study covers the effect of notches on the natural frequencies of the same specimen used in the
experimental part. The mathematical model for the beam contains two open edges on the upper
surface. The effect of the location of cracks relative to the restricted end, depth of cracks, volume
fraction of fibers and orientation of the fiber on the natural frequencies are explored. The results
were calculated using the known engineering program (ANSYS), the results obtained has been
compared with those calculated analytically by (Sierakowski RL.), which have expressed the closest
well also the comparison between the experimental results with that calculated by (ANSYS) has
very well. The study shows that the highest difference in frequencies occur when the value of the
fiber orientation equal to 0odegree, the effect of location of the cracks decrease when the cracks
moving toward the free end and also shows that an increase of the depth of the cracks leads to a
decrease in the values of natural frequencies.
It is well known that the wreath product is the endmorphism monoid of a free S-act with n-generators. If S is a trivial semigroup then is isomorphic to . The extension for to where is an independent algebra has been investigated. In particular, we consider is to be , where is a free left S-act of n-generators. The eventual goal of this paper is to show that is an endomorphism monoid of a free left S-act of n-generators and to prove that is embedded in the wreath product .
This paper develops the work of Mary Florence et.al. on centralizer of semiprime semirings and presents reverse centralizer of semirings with several propositions and lemmas. Also introduces the notion of dependent element and free actions on semirings with some results of free action of centralizer and reverse centralizer on semiprime semirings and some another mappings.
A few examinations have endeavored to assess a definitive shear quality of a fiber fortified polymer (FRP)- strengthened solid shallow shafts. Be that as it may, need data announced for examining the solid profound pillars strengthened with FRP bars. The majority of these investigations don't think about the blend of the rigidity of both FRP support and cement. This examination builds up a basic swagger adequacy factor model to evaluate the referenced issue. Two sorts of disappointment modes; concrete part and pulverizing disappointment modes were examined. Protection from corner to corner part is chiefly given by the longitudinal FRP support, steel shear fortification, and cement rigidity. The proposed model has been confirmed util
... Show MoreThis paper studies the effect of contact areas on the transient response of mechanical structures. Precisely, it investigates replacing the ordinary beam of a structure by two beams of half the thickness, which are joined by bolts. The response of these beams is controlled by adjusting the tightening of the connecting bolts and hence changing the magnitude of the induced frictional force between the two beams which affect the beams damping capacity. A cantilever of two beams joined together by bolts has been investigated numerically and experimentally. The numerical analysis was performed using ANSYS-Workbench version 17.2. A good agreement between the numerical and experimental results has been obtained. In general, results s
... Show MoreThe present study illustrates observations, record accurate description and discussion about the behavior of twelve tested, simply supported, precast, prestressed, segmental, concrete beams with different segment numbers exposed to high fire temperatures of 300°C, 500°C, and 700°C. The test program included thermal tests by using a furnace manufactured for this purpose to expose to high burning temperature (fire flame) nine beams which were loaded with sustaining dead load throughout the burning process. The beams were divided into three groups depending on the precast segments number. All had an identical total length of 3150mm but each had different segment number (9, 7, and 5 segments), in other words, different segment length
... Show MoreCarbon fiber reinforced polymers (CFRP) were widely used in strengthening reinforced concrete members
in the last few years, these fibers consist mainly of high strength fibers which increase the member capacity in addition to changing the mode of failure of the reinforced concrete beams. Experimental and theoretical investigations were carried to find the behavior of reinforced concrete beams strengthened by CFRP in shear and bending. The experimental work included testing of 12 beams divided into 4 groups; each group contains 3 beams. The following parameters were taken into consideration: - Concrete crushing strength. - CFRP strengthening location (shear strengthening and both shear and flexure strengthening). Reinforced beams were
This paper introduces experimental results of eighteen simply supported reinforced concrete beams of cross sections ( ) and length 3000 mm to study the effect of lacing reinforcement on the performance of such beams under static and fatigue loads. Twelve reinforced concrete beams (two of them are casted with vertical shear reinforcement used as control beams) are tested under four points bending loading with displacement control technique and six laced reinforced concrete beams were exposed to high frequency (10 Hz) by fixing the fatigue load in each cycle. Three parameters are used in the designed beams, which are: lacing bar diameter (4mm, 6mm, and 8mm), lacing bar inclination angle to horizontal , and lacing steel rat
... Show More