Low bearing capacity of weak soil under shallow footings represents one of construction problems.
Kaolin with water content converges to liquid limit used to represent the weak soil under shallow
footing prototype. On the other hand, fly ash, which can be defined as undesirable industrial waste
material, was used to improve the bearing capacity of the soft soil considered in this research. The soft
soil was prepared in steel box (36×36×25) cm and shallow square footing prototype (6×6) cm were
used .Group of physical and chemical tests were conducted on kaolin and fly ash. The soft soil was
improved by a bed of compacted fly ash placed under the footing with dimensions equal to that of
footing but with different depth ratios. The results show that there is a noticeable improvement in the
behavior of footing when improved by compacted fly ash. The improvement showed a decrease in
settlement and increase in bearing capacity. The improvement ratio in bearing capacity was calculated
by comparing the ultimate bearing capacity value when testing the kaolin alone with its value of kaolin
improved with compacted fly ash at the same value of eccentricity. It is important to note that
eccentricity values were chosen according to the rule of middle third of footing base(i.e.,e≤B/6). The
improvement ratio was about (130%) in average value, that represent a good ratio of improvement
تتحقق اهداف الدول عبر توظيف امكانياتها ومواردها ، وهذا التوظيف يقترن بوسائل مختلفة باختلاف الامكانيات المتاحة. وتتفاوت هذه الوسائل ما بين الاكراه والترغيب ، واحياناً من الممكن استخدام كلا الوسيلتين ، وتندرج هذه الوسائل من حيث تصنيفها ضمن نوعين رئيسين هما: القوة الصلبة ]القوة العسكرية والاقتصادية[ والقوة الناعمة ]استخدام جميع ادوات الترغيب وتسخيرها من اجل ان تُعجب بها الدول الاخرى وتنصاع
... Show MoreAn analytical approach based on field data was used to determine the strength capacity of large diameter bored type piles. Also the deformations and settlements were evaluated for both vertical and lateral loadings. The analytical predictions are compared to field data obtained from a proto-type test pile used at Tharthar –Tigris canal Bridge. They were found to be with acceptable agreement of 12% deviation.
Following ASTM standards D1143M-07e1,2010, a test schedule of five loading cycles were proposed for vertical loads and series of cyclic loads to simulate horizontal loading .The load test results and analytical data of 1.95
... Show MoreLow salinity (LS) water flooding is a promising EOR method which has been examined by many experimental studies and field pilots for a variety of reservoirs and oils. This paper investigates applying LS flooding to a heavy oil. Increasing the LS water temperature improves heavy oil recovery by achieving higher sweep efficiency and improving oil mobility by lowering its viscosity. Steam flooding projects have reported many problems such as steam gravity override, but override can be lessened if the steam is is alternated with hot LS water. In this study, a series of reservoir sandstone cores were obtained from Bartlesville Sandstone (in Eastern Kansas) and aged with heavy crude oil (from the same reservoir) at 95°C for 45 days. Five reservo
... Show More4-methylaniline and its Schiff base derivative were intercalated into the Bentonite clay interlayers in a solid state reaction followed by a condensation reaction to produce two organo-clay composites. X-ray diffraction was used to identify the changes in basal spacing of montmorillonite layers which exhibited noticeable alteration before and after the formation of the composites. FT-IR spectra, on the other hand, were utilized for identifying the structural compositions of the prepared materials as well as the formation of the intercalated Schiff base derivative. The surface morphology of the composites was examined by Scanning Electron Microscopy SEM and Atomic Force Microscope AFM, which reflected some differences in the surface of prepa
... Show MoreIn this paper, a theoretical study of the energy spectra and the heat capacity of one electron quantum dot with Gaussian Confinement in an external magnetic field are presented. Using the exact diagonalization technique, the Hamiltonian of the Gaussian Quantum Dot (GQD) including the electron spin is solved. All the elements in the energy matrix are found in closed form. The eigenenergies of the electron were displayed as a function of magnetic field, Gaussian confinement potential depth and quantum dot size. Explanations to the behavior of the quantum dot heat capacity curve, as a function of external applied magnetic field and temperature, are presented.