Low bearing capacity of weak soil under shallow footings represents one of construction problems.
Kaolin with water content converges to liquid limit used to represent the weak soil under shallow
footing prototype. On the other hand, fly ash, which can be defined as undesirable industrial waste
material, was used to improve the bearing capacity of the soft soil considered in this research. The soft
soil was prepared in steel box (36×36×25) cm and shallow square footing prototype (6×6) cm were
used .Group of physical and chemical tests were conducted on kaolin and fly ash. The soft soil was
improved by a bed of compacted fly ash placed under the footing with dimensions equal to that of
footing but with different depth ratios. The results show that there is a noticeable improvement in the
behavior of footing when improved by compacted fly ash. The improvement showed a decrease in
settlement and increase in bearing capacity. The improvement ratio in bearing capacity was calculated
by comparing the ultimate bearing capacity value when testing the kaolin alone with its value of kaolin
improved with compacted fly ash at the same value of eccentricity. It is important to note that
eccentricity values were chosen according to the rule of middle third of footing base(i.e.,e≤B/6). The
improvement ratio was about (130%) in average value, that represent a good ratio of improvement
Background/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CN
... Show MoreImproved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval
Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
Image is an important digital information that used in many internet of things (IoT) applications such as transport, healthcare, agriculture, military, vehicles and wildlife. etc. Also, any image has very important characteristic such as large size, strong correlation and huge redundancy, therefore, encrypting it by using single key Advanced Encryption Standard (AES) through IoT communication technologies makes it vulnerable to many threats, thus, the pixels that have the same values will be encrypted to another pixels that have same values when they use the same key. The contribution of this work is to increase the security of transferred image. This paper proposed multiple key AES algorithm (MECCAES) to improve the security of the tran
... Show MoreSeepage through earth dams is one of the most popular causes for earth dam collapse due to internal granule movement and seepage transfer. In earthen dams, the core plays a vital function in decreasing seepage through the dam body and lowering the phreatic line. In this research, an alternative soil to the clay soil used in the dam core has been proposed by conducting multiple experiments to test the permeability of silty and sandy soil with different additives materials. Then the selected sandy soil model was used to represent the dam experimentally, employing a permeability device to measure the amount of water that seeps through the dam's body and to represent the seepage line. A numerical model was adopted using Geo-Studio software i
... Show MoreDetection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show More