Asphalt pavement properties in Iraq are highly affected by elevated summer air temperatures. One of these properties is stiffness (resilient modulus). To explain the effect of air temperatures on stiffness of asphalt concrete, it is necessary to determine the distribution of temperatures through the pavement asphalt concrete layers. In this study, the distribution of pavement temperatures at three depths (2cm,7cm, 10cm) below the pavement surface is determined by using the temperature data logger instrument. A relationship for determining pavement temperature as related to depth and air temperature has been suggested. To achieve the objective of this thesis, the prepared specimens have been tested for indirect tension in accordance with ASTM D4123, using the pnuematic repeated load apparatus, in order to determine the values of resilient modulus at three different temperatures (10, 25, 40) °C. From results of testing, it is observed that the resilient modulus decreases with increase in test temperature by a rate of 8.78×10 Psi/C' for asphalt concrete wearing courses. An increase in optimum asphalt content by 0.1% (by weight of total mixture) causes a decrease in resilient modulus by 22% at a temperature of 40C". A statistical model for the prediction of resilient modulus has been developed depending on mixture variables of: asphalt content, asphalt hinder viscosity, surface area of combined aggregates, air voids of compacted mixture and test temperature.
This study on the plant of Ain –AL Bason Catharanthus roseous showed the ability of callus cells that is produced by In Vitro culture technique and transformed to the accumulated media (MS 40gm/L sucrose ,2gm/L IAA Indole acetic acid , 0.5gm/L Tryptophan) to produce Vinblastine and Vincristine compounds. Extraction, purification and quantitive determination of Vinblastine and Vincristine compounds using High performance liquid chromatography technique (HPLC)were carried out. The results showed that the highest concentration of Vinblastine and Vincristine compounds were ( 4.653,12.5 (ppm /0.5 dry Wight respectively from transformed callus cells from MS 40 gm /L sucrose , 2 gm / L NAA Naphthaline acetic acid .
In this paper, a study of improving the physical properties, mechanical and thermal insulation are conducted to produce gypsum boards with lightweight from waste materials. These boards can be used as an internal packaging wall or partitions tile of non-Bering with a high thermal insulation. Gypsum plaster mixed with waste material like (PET Polyethylene terephthalate, sawdust in size4.75mm and rubber) in different ratio (5%, 7%, 10%, 15%, 20%, 25%and 30%) of plaster to produce boards and then to find out the effect of these materials on the properties of boards, so that tests of consistency, setting time, flexural strength, density and thermal conductivity were achieved for all samples to find out this effect. The result shows that the
... Show MoreThe Neutron Fermi Age, t, and the neutron slowing down density, q (r, t) , have been measured for some materials such as Graphite and Iron by using gamma spectrometry system UCS-30 with NaI (Tl) detector. This technique was applied for Graphite and Iron materials by using Indium foils covered by Cadmium and the measurements done at the Indium resonance of 1.46 eV. These materials are exposed to a plane 241Am/Be neutron source with recent activity 38 mCi. The measurements of the Fermi Age were found to be t = 297 ± 21 cm2 for Graphite, t = 400 ± 28 cm2 for Iron. Neutron slowing down density was also calculated depending on the recent experimental t value and distance.
This paper investigated the fatigue life behavior of two composite materials subjected to different times of shot peening (2, 4 and 6 min).The first material prepared from unsaturated polyester with E-glass reinforcement by 33% volume fraction. While, the second one was prepared from unsaturated polyester with aluminum powder by2.5% volume fraction. The experimental results showed that the improvement in endurance limit was obtained (for the first material) at 2, 4 and 6 min shot peening times where the percentage of maximum improvement was 25% at shot peening time of 6 min. While, the endurance limit of the second material decreased at shot peening times of 2, 4 and 6 min where the percentage of maximum reduction was 29 % at shot peenin
... Show MoreThis research is studying technique sculptures super - realism, search through, how the method of work, and the search for the materials used in their manufacture, and this is the first study in the field of art and the field of academic study in the country.Research consists of an introduction, And four sections, The introduction containing information on: research problem, Importance of research, Goals of the research, Limits of research, research approach, and research tools.The first section contains a technical study sculptures super -realism in contemporary sculpture, while the second section includes a search for alternative materials available in the local markets, for making sculptures super - realism, the third section dedicate
... Show MoreRecently, increasing material prices coupled with more acute environmental awareness and the implementation of regulation has driven a strong movement toward the adoption of sustainable construction technology. In the pavement industry, using low temperature asphalt mixes and recycled concrete aggregate are viewed as effective engineering solutions to address the challenges posed by climate change and sustainable development. However, to date, no research has investigated these two factors simultaneously for pavement material. This paper reports on initial work which attempts to address this shortcoming. At first, a novel treatment method is used to improve the quality of recycled concrete coarse aggregates. Thereafter, the treated recycled
... Show MoreDuring the last two decades, nanomaterial application has gained a significant attraction into asphalt technology due to their effect in enhancing asphalt binder improving the asphaltic mixture. This study will modify the asphalt binder with two different nano types, nano SiO2 and CaCO3, at levels ranging from 1% to 7%. The resulting optimum nano-modified Asphalt will be subject to a series of rheological tests, including dynamic shear rheometer (DSR), Viscosity, and bending beam rheometer (BBR) to determine asphalt binder sensitivity towards low-medium-high temperature range. Results indicate that both nano types improved the physical characteristics of Asphalt, and 5% by weight of Asphalt was suggested as a reasonable dosage of nano-SiO2
... Show MoreSearch Results at the International Journal of Science and Research (IJSR)
Frequent data in weather records is essential for forecasting, numerical model development, and research, but data recording interruptions may occur for various reasons. So, this study aims to find a way to treat these missing data and know their accuracy by comparing them with the original data values. The mean method was used to treat daily and monthly missing temperature data. The results show that treating the monthly temperature data for the stations (Baghdad, Hilla, Basra, Nasiriya, and Samawa) in Iraq for all periods (1980-2020), the percentage for matching between the original and the treating values did not exceed (80%). So, the period was divided into four periods. It was noted that most of the congruence values increased, re
... Show MoreDensity data of alum chrom in water and in aqueous solution of poly (ethylene glycol) (1500) at different temperatures (288.15, 293.15, 298.15) k have been used to estimate the apparent molar volume (Vθ), limiting apparent molar volume (Vθ˚) experimental slope (Sv) and the second derivative of limiting partial molar volume [δ2 θ v° /δ T2] p .The viscosity data have been analyzed by means of Jones –Dole equation to obtain coefficient A, and Jones – Dole coefficient B, Free activation energy of activation per mole of solvent, Δμ10* solute, Δμ20* the activation enthalpy ΔH*,and entropy, ΔS*of activation of viscous flow. These results have been discussed
... Show More