Mechanical degradation hampers the practical usage of polymers for turbulent drag reduction
application. Mechanical degradation refers to the chemical process in which the activation energy of
polymer chain scission is exceeded by mechanical action on the polymer chain, and bond rupture
occurs. When a water-soluble polymer and surfactant are mixed in water solution, the specific structures
(aggregates) are formed, in which polymer film is formed around micelle. In this work, Xanthan gum (XG) –
Sodium lauryl ether sulfate (SELS) complex formation and its effect on percentage viscosity reduction
(%VR) was studied. It was found that SELS surfactant reduced the mechanical degradation of XG much
more efficiently than this polymer alone. Xanthan Gum (XG) has been tested for its shear stability and
degradability. 0.5% and 1.0 % by weight concentration solutions were exposed to shear stirring at different
speeds and time; also 0.5% through 1.5% by weight concentration solutions of SELS were added to XG
solutions to determine the ability of SELS to reduce the mechanical degradation of XG. It has been noticed
by measuring the percentage viscosity reduction (%VR) of the mixture of XG-SELS that the % VR
decreases when added this surfactant to XG polymer
Biodiesel can be prepared from various types of vegetable oils or animal fats with the aid of a catalyst.
Calcium oxide (CaO) is one of the prospective heterogeneous catalysts for biodiesel synthesis. Modification
of CaO by impregnation on silica (SiO2) can improve the performance of CaO as catalyst. Egg shells and rice
husks as biomass waste can be used as raw materials for the preparation of the silica modified CaO catalyst.
The present study was directed to synthesize and characterize CaO impregnated SiO2 catalyst from biomass
waste and apply it as catalyst in biodiesel synthesis. The catalyst was synthesized by wet impregnation
method and characterized by x-ray diffraction, x-ray fluorescence, nitr
The research discusses one of the most critical issues of corporate finance which is related to asset utilization efficiency. Researchers used internal growth rate as independent variable (Proxy of asset utilization efficiency) and sustainable growth rate-dependent variable (proxy of stockholders wealth). According to these two variables, researchers formulate major hypotheses (There is no significant effect of internal growth rate on sustainable growth rate), as well as two sub-hypotheses, examine the components of major variables. Sample of Iraqi industrial companies which listed in the Iraqi stock exchange selected to test and examine main hypotheses. Result of simple and multiple regressions explain there is a significant effect of i
... Show MoreIn the current work, the mixing ratios ( 𝛿 ) of gamma transitions were calculated from energy levels in the isotopes neodymium 60𝑁𝑎 142−150 populated in the 60Nd 142− 150 (n, n ˊγ) 60Nd 142− 150 using the 𝑎2 ratio method. We used the experimental coefficient (𝑎2 ) for two γ-transitions from the initial state itself, the statistical tensor 𝜌2(𝐽𝑖), associated with factor 𝑎2 , would be the same for the two transitions. The results obtained are in good agreement or within the experimental error with -those previously published. And existing contradictions resulting from inaccuracies in the empirical results of previous work. The current results confirm that the , 𝑎2 − method is used to calculate th
... Show MoreThe removal of heavy metal ions from wastewater by ion exchange resins ( zeolite and purolite C105), was investigated. The adsorption process, which is pH dependent, shows maximum removal of metal ions at pH 6 and 7 for zeolite and purolite C105 for initial metal ion
concentrations of 50-250 mg/l, with resin dose of 0.25-3 g. The maximum ion exchange capacity was found to be 9.74, 9.23 and 9.71 mg/g for Cu2+, Pb2+, and Ni2+ on zeolite respectively, while on purolite C105 the maximum ion exchange capacity was found to be 9.64 ,8.73 and 9.39 for Cu2+, Pb2+, and Ni2+ respectively. The maximum removal was 97-98% for Cu2+ and Ni2+ and 92- 93% for Pb2+ on zeolite, while it was 93-94% for Cu2+, 96-97% for Ni2+, and 87-88% for Pb2+ on puroli
Education by lectures has been standard for 100 years or more. Given the 21st century technology, people can connect with others around the world instantly, electronically. With the pandemic, teaching changed to one-way information transfer with the loss of interpersonal learning experience. SNI® and now SNI Digital™ have been experimenting with different forms of communication to transfer information.
Using an interactive education model, a meeting for neurosurgeons in Baghdad was held for students, residents, and neurosurgeons
Purpose: To determine the effect of information technology governance (ITG) under the control objectives for information and related technologies (COBIT) on financial performance is the objective of this study. Additionally, the article seeks to look into the relationships between the factors under consideration. Theoretical framework: Information technology and operational processes are evaluated and ensure their compliance with the instructions of the Central Bank of Iraq. Therefore, the research dealt with a conceptual framework by reviewing the literature on the importance of the COBIT framework in assessing financial performance. Design/methodology/approach: To investigate the effect of information technology; we the valu
... Show MoreIn this research the Inter-Particle Expectation Values have been studied for atomics Helium (He) and Beryllium (Be) also for He-like ions, Be-like ions (Li-1, B+1? Li+1, Be+2, B+3) by using Hartree-Fock wave functions, We compared the results to some ions which have the same atomic number from each group with atomic number, We compared the results with published calculations to the last studied .
In this research, the size strain plot method was used to estimate the particle size and lattice strain of CaTiO3 nanoparticles. The SSP method was developed to calculate new variables, namely stress, and strain energy, and the results were crystallite size (44.7181794 nm) lattice strain (0.001211), This method has been modified to calculate new variables such as stress and its value (184.3046308X10-3Mpa) and strain energy and its value (1.115833287X10-6 KJm-3).