Particulate matter (PM) emitted from diesel engine exhaust have been measured in terms of mass, using
99.98 % pure ethanol blended directly, without additives, with conventional diesel fuel (gas – oil),to
get 10 % , 15 %, 20 % ethanol emulsions . The resulting PM collected has been compared with those
from straight diesel. The engine used is a stationary single cylinder, variable compression ratio Ricardo
E6/US. This engine is fully instrumented and could run as a compression or spark ignition.
Observations showed that particulate matter (PM) emissions decrease with increasing oxygenate
content in the fuel, with some increase of fuel consumption, which is due to the lower heating value of
ethanol. The reduction in PM formation increased with load increase, maximum reduction were 58% at
1800 rpm. There was no significant reduction observed at low loads. It could be concluded from the
test results that ethanol may be an alternative to / or partially substitute, fossil fuels.
The present article discusses the synthesis of tetradentate Schiff base complexes formed by the condensation reaction of 2-hydroxy benzaldehyde and phthalohydrazide. The ligand (LH2) was detected using FT-IR spectra, 1H, 13C-NMR, UV-Vis spectroscopy, elemental microanalysis CHN, and mass spectrometry. The obtained solid complexes have been assessed using physicochemical and spectroscopic techniques, including UV-Vis, FT-IR, nuclear magnetic resonance (1H-NMR, 13C-NMR), mass spectrometry, thermal gravimetric analysis (TGA), and atomic absorption, in addition to complex conductivity and magnetic moment measurements. The infrared results demonstrated that ligands functioning as tetradentate ligands are chelated to metal ions via the ph
... Show MoreThis research presents a comparison of performance between recycled single stage and double stage hydrocyclones in separating water from water/kerosene emulsion. The comparison included several factors such as: inlet flow rate (3,5,7,9, and 11 L/min), water feed concentration (5% and 15% by volume), and split ratio (0.1 and 0.9). The comparison extended to include the recycle operation; once and twice recycles. The results showed that increasing flow rate as well as the split ratio enhancing the separation efficiency for the two modes of operation. On the contrary, reducing the feed concentration gave high efficiencies for the modes. The operation with two cycles was more efficient than one cycle. The maximum obtained effici
... Show MoreThe present research focuses on the study of the effect of mass transfer resistance on the rate of heat transfer in pool boiling. The nucleate pool boiling heat transfer coefficients for binary mixtures (ethanol-n-butanol, acetone-n-butanol, acetone-ethanol, hexane-benzene, hexane-heptane, and methanol-water) were measured at different concentrations of the more volatile components. The systems chosen covered a wide range of mixture behaviors.
The experimental set up for the present investigation includes electric heating element submerged in the test liquid mounted vertically. Thermocouple and a digital indictor measured the temperature of the heater surface. The actual heat transfer rate being obtained by multiplying the voltme
... Show MoreThe performance of H2S sensor based on poly methyl methacrylate (PMMA)-CdS nanocomposite fabricated by spray pyrolysis technique has been reported. XRD pattern diffraction peaks of nano CdS has been indexed to the hexagonally wurtzite structured The nanocomposite exhibits semiconducting behavior with optical energy gap of4.06eV.SEM morphology appears almost tubes like with CdS/PMMA network. That means the addition of CdS to polymer increases the roughness in the film and provides high surface to volume ratio, which helps gas molecule to adsorb on these tubes. The resistance of PMMA-CdS nanocomposite showed a considerable change when exposed to H2S gas. Fast response time to detect H2S gas was achieved by using PMMA-CdS thin film sensor. The
... Show MoreBecause of the quick growth of electrical instruments used in noxious gas detection, the importance of gas sensors has increased. X-ray diffraction (XRD) can be used to examine the crystal phase structure of sensing materials, which affects the properties of gas sensing. This contributes to the study of the effect of electrochemical synthesis of titanium dioxide (TiO2) materials with various crystal phase shapes, such as rutile TiO2 (R-TiO2NTs) and anatase TiO2 (A-TiO2NTs). In this work, we have studied the effect of voltage on preparing TiO2 nanotube arrays via the anodization technique for gas sensor applications. The results acquired from XRD, energy dispersion spectro
... Show MoreIn this research, porous silicon (PS) prepared by anodization etching on surface of single crystalline p-type Si wafer, then Gold nanoparticle (AuNPs) prepared by pulsed laser ablation in liquid. NPs deposited on PS layer by drop casting. The morphology of PS, AuNPs and AuNPs/PS samples were examined by AFM. The crystallization of this sample was characterized by X-ray diffraction (XRD). The electrical properties and sensitivity to CO2 gas were investigated to Al/AuNPs/PS/c-Si/Al, we found that AuNPs plays crucial role to enhance this properties.