Preferred Language
Articles
/
joe-3006
MAGNETO HYDRODYNAMIC NATURAL CONVECTION FLOW ON A VERTICAL CYLINDER WITH A PRESENCE OF HEAT GENERATION AND RADIATION
...Show More Authors

The present work investigates the effect of magneto – hydrodynamic (MHD) laminar natural convection flow on a vertical cylinder in presence of heat generation and radiation. The governing equations which used are Continuity, Momentum and Energy equations. These equations are transformed to dimensionless equations using Vorticity-Stream Function method and the resulting nonlinear system
of partial differential equations are then solved numerically using finite difference approximation. A thermal boundary condition of a constant wall temperature is considered. A computer program (Fortran 90) was built to calculate the rate of heat transfer in terms of local Nusselt number, total mean Nusselt number, velocity distribution as well as temperature distribution for a selection of parameters sets
consisting of dimensionless heat generation parameter (0.0 ≤ Q ≤ 2.0), conduction – radiation parameter (0.0 ≤ N ≤ 10.0), and the dimensionless magneto hydrodynamic parameter (0.0 ≤ M ≤ 1.0). Numerical solution have been considered for a fluid Prandtl number fixed at (Pr=0.7), Rayleigh number (102 ≤ ≤ 105 ) l Ra . The results are shown reasonable representation to the relation between Nusselt number and Rayleigh number with other parameters (M, N and Q). Generally, Nu increase with increasing Ra, M, N and Q separately. When the MHD, N, and Q effect added to the heat transfer mechanism, the heat transfer rate increased and this effect increased with increasing in Ra, MHD, N, and Q. The effect of magneto hydrodynamic, heat generation and heat radiation on the rate of heat transfer is concluded by correlation
equations. The results are found to be in good agreement compared with the results of other researchers.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Effect of Velocity on Dissolved Oxygen Cathodic Polarization using a Rotating Cylinder Electrode
...Show More Authors

The aim of the present work to study the effect of changing velocity (Reynold's number) on oxygen cathodic polarization using brass rotating cylinder electrode in 0.1, 0.3 and 0.5N NaCl solutions (PH = 7) at temperatures 40, 50 and 600 C. Cathodic polarization experiments were conducted as a function of electrode rotational speed and concentration.

View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Portugaliae Electrochimica Acta
A Kinetic Study of Oxalic Acid Electrochemical Oxidation on a Manganese Dioxide Rotating Cylinder Anode
...Show More Authors

View Publication
Scopus (9)
Crossref (7)
Scopus Crossref
Publication Date
Sat Mar 05 2022
Journal Name
Mathematical Methods In The Applied Sciences
Double‐diffusive convection on peristaltic flow of hyperbolic tangent nanofluid in non‐uniform channel with induced magnetic field
...Show More Authors

Consequence of thermal and concentration convection on peristaltic pumping of hyperbolic tangent nanofluid in a non‐uniform channel and induced magnetic field is discussed in this article. The brief mathematical modeling, along with induced magnetic field, of hyperbolic tangent nanofluid is given. The governing equations are reduced to dimensionless form by using appropriate transformations. Exact solutions are calculated for temperature, nanoparticle volume fraction, and concentration. Numerical technique is manipulated to solve the highly non‐linear differential equations. The roll of different variables is graphically analyzed in terms of concentration, temperature, volume fraction of nanoparticles, axial induced magnetic fie

... Show More
View Publication
Scopus (19)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Experimental Investigation of Convection Heat Transfer Enhancement in Horizontal Channel Provided with Metal Foam Blocks
...Show More Authors

Convection heat transfer in a horizontal channel provided with metal foam blocks of two numbers of pores per unit of length (10 and 40 PPI) and partially heated at a constant heat flux is experimentally investigated with air as the working fluid. A series of experiments have been carried out under steady state condition. The experimental investigations cover the Reynolds number range from 638 to 2168, heat fluxes varied from 453 to 4462 W/m2, and Darcy number 1.77x10-5, 3.95x10-6. The measured data were collected and analyzed. Results show that the wall temperatures at each heated section are affected by the imposed heat flux variation, Darcy number, and Reynolds number variation. The var

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Laminar Natural Convection of Newtonian and Non – Newtonian Fluids Inside Triangular Enclosure
...Show More Authors

In the present work, steady two – dimensional laminar natural convection heat transfer of Newtonian and non-Newtonian fluids inside isosceles triangular enclosure has been analyzed numerically for a wide range of the modified Rayleigh numbers of (103Ra ≤ 105), with non-dimensional parameter (NE) of Prandtl – Eyring model ranging from (0 to 10), and modified Prandtl number take in the range (Pr* =1,10, and 100). Two types of boundary conditions have been considered. The first, when the inclined walls are heated with different uniform temperatures and the lower wall is insulated. The second, when the bottom wall is heated by applying a uniform heat flux while the inclined walls at

... Show More
View Publication Preview PDF
Publication Date
Mon Jul 01 2013
Journal Name
International Journal Of Computer Applications
Mixed Convection in a Square Cavity Filled with Porous Medium with Heated Bottom Wall
...Show More Authors

Two-dimensional unsteady mixed convection in a porous cavity with heated bottom wall is numerically studied in the present paper. The forced flow conditions are imposed by providing a hydrostatic pressure head at the inlet port that is located at the bottom of one of the vertical side walls and an open vent at the top of the other vertical side wall. The Darcy model is adopted to model the fluid flow in the porous medium and the combination effects of hydrostatic pressure head and the heat flux quantity parameters are carefully investigated. These governing parameters are varied over wide ranges and their effect on the heat transfer characteristics is studied in detail. It is found that the time required to reach a desired temperature at th

... Show More
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Energy Storage
Improved melting of latent heat storage via porous medium and uniform Joule heat generation
...Show More Authors

View Publication
Scopus (55)
Crossref (48)
Scopus Clarivate Crossref
Publication Date
Tue Feb 19 2019
Journal Name
Heat And Mass Transfer
Mass transfer characteristics of a flow-by fixed bed electrochemical reactor composed of vertical stack stainless steel screens cathode
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Dec 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Experimental Study on the Impact of External Geometrical Shape on Free and Forced Convection Time Dependent Average Heat Transfer Coefficient during Cooling Process
...Show More Authors

In this research, an experimental study was conducted to high light the impact of the exterior shape of a cylindrical body on the forced and free convection heat transfer coefficients when the body is hold in the entrance of an air duct. The impact of changing the body location within the air duct and the air speed are also demonstrated. The cylinders were manufactured with circular, triangular and square sections of copper for its high thermal conductivity with appropriate dimensions, while maintaining the surface area of all shapes to be the same. Each cylinder was heated to a certain temperature and put inside the duct at certain locations. The temperature of the cylinder was then monitored. The heat transfer coefficient were then cal

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 11 2023
Journal Name
International Journal Of Phytoremediation
Adsorption of methyl orange on low-cost adsorbent natural materials and modified natural materials: a review
...Show More Authors

Recently a large number of extensive studies have amassed that describe the removal of dyes from water and wastewater using natural adsorbents and modified materials. Methyl orange dye is found in wastewater streams from various industries that include textiles, plastics, printing and paper among other sources. This article reviews methyl orange adsorption onto natural and modified materials. Despite many techniques available, adsorption stands out for efficient water and wastewater treatment for its ease of operation, flexibility and large-scale removal of colorants. It also has a significant potential for regeneration recovery and recycling of adsorbents in comparison to other water treatment methods. The adsorbents described herein were

... Show More
Preview PDF