Preferred Language
Articles
/
joe-3006
MAGNETO HYDRODYNAMIC NATURAL CONVECTION FLOW ON A VERTICAL CYLINDER WITH A PRESENCE OF HEAT GENERATION AND RADIATION
...Show More Authors

The present work investigates the effect of magneto – hydrodynamic (MHD) laminar natural convection flow on a vertical cylinder in presence of heat generation and radiation. The governing equations which used are Continuity, Momentum and Energy equations. These equations are transformed to dimensionless equations using Vorticity-Stream Function method and the resulting nonlinear system
of partial differential equations are then solved numerically using finite difference approximation. A thermal boundary condition of a constant wall temperature is considered. A computer program (Fortran 90) was built to calculate the rate of heat transfer in terms of local Nusselt number, total mean Nusselt number, velocity distribution as well as temperature distribution for a selection of parameters sets
consisting of dimensionless heat generation parameter (0.0 ≤ Q ≤ 2.0), conduction – radiation parameter (0.0 ≤ N ≤ 10.0), and the dimensionless magneto hydrodynamic parameter (0.0 ≤ M ≤ 1.0). Numerical solution have been considered for a fluid Prandtl number fixed at (Pr=0.7), Rayleigh number (102 ≤ ≤ 105 ) l Ra . The results are shown reasonable representation to the relation between Nusselt number and Rayleigh number with other parameters (M, N and Q). Generally, Nu increase with increasing Ra, M, N and Q separately. When the MHD, N, and Q effect added to the heat transfer mechanism, the heat transfer rate increased and this effect increased with increasing in Ra, MHD, N, and Q. The effect of magneto hydrodynamic, heat generation and heat radiation on the rate of heat transfer is concluded by correlation
equations. The results are found to be in good agreement compared with the results of other researchers.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 30 2002
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Convective Heat Transfer of Fluid Flowing Across a Vertical Plate
...Show More Authors

View Publication Preview PDF
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Experimental Study of Natural Convection Heat Transfer in Confined Porous Media Heated From Side
...Show More Authors

Transient three-dimensional natural convection heat transfer due to the influences of heating from one side of an enclosure filled with a saturated porous media, whereas the opposite side is maintained at a constant cold temperature, and the other four sides are adiabatic, were investigated in the present work experimentally. Silica sand was used as a porous media saturated with distilled water filled in a cubic enclosure heated from the side,using six electrical controlled heaters, at constant temperatures of (60, 70, 80, 90, and 100oC). The inverse side cooled at a constant temperature of (24oC) using an aluminum heat exchanger, consisted of 15 channels feeded with constant temperature water. Eighty thermocouples were used to control t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
MIXED CONVECTION PHENOMINA AFFECTED BY RADIATION IN A HORIZONTAL RECTANGULAR DUCT WITH COCENTRIC AND ECCENTRIC CIRCULAR CORE
...Show More Authors

The numerical investigation has been performed to study the radiation affected steady state laminar mixed convection induced by a hot inner varied positions circular core in a horizontal rectangular channel for a fully developed flow. To examine the effects of thermal radiation on thermo fluid dynamics behavior in the eccentric geometry channel, the generalized body fitted co-ordinate system is introduced while the finite difference method is used for solving the radiative transport equation. The governing equations which used are continuity, momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function. After validating numerical results for the case without radiation, the detailed rad

... Show More
Crossref
Publication Date
Tue Sep 01 2015
Journal Name
Journal Of Engineering
Study Effect of Central Rectangular Perforation on the Natural Convection Heat Transfer in an Inclined Heated Flat Plate
...Show More Authors

Anumerical solutions is presented to investigate the effect of inclination angle (θ) , perforation ratio (m) and wall temperature of the plate (Tw) on the heat transfer in natural convection from isothermal square flat plate up surface heated (with and without concentrated hole). The flat plate with dimensions of (128 mm) length × (64 mm) width has been used five with square models of the flat plate that gave a rectangular perforation of (m=0.03, 0.06, 0.13, 0.25, 0.5). The values of angle of inclination were (0o, 15o 30o 45o 60o) from horizontal position and the values of wall temperature (50oC, 60 oC, 70 oC, 90 oC, 100o<

... Show More
View Publication Preview PDF
Publication Date
Wed Oct 05 2022
Journal Name
Heat Transfer
Numerical investigation of natural convection in a square enclosure partially filled with horizontal layers of a porous medium
...Show More Authors
Abstract<p>Two‐dimensional buoyancy‐induced flow and heat transfer inside a square enclosure partially occupied by copper metallic foam subjected to a symmetric side cooling and constant heat flux bottom heating was tested numerically. Finite Element Method was employed to solve the governing partial differential equations of the flow field and the Local Thermal Equilibrium model was used for the energy equation. The system boundaries were defined as lower heated wall by constant heat flux, cooled lateral walls, and insulated top wall. The three parameters elected to conduct the study are heater length (7 ≤ <italic>ζ</italic> ≤ 20 cm), constant heat flux (150 ≤ <italic>q<</italic></p> ... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
PARAMETRIC STUDY OF LAMINAR FREE CONVECTION IN INCLINED POROUS ANNULUS WITH FINS ON THE INNER CYLINDER
...Show More Authors

An experimental and numerical study has been carried out to investigate the heat transfer by natural convection in a three dimensional annulus enclosure filled with porous media (silica sand) between two inclined concentric cylinders with (and without) annular fins attached to the inner cylinder under steady state condition; The experiments were carried out for a range of modified Rayleigh number (0.2 ≤Ra*≤ 11) and extended to Ra* =500 for numerical study, annulus inclination angle of (δ = 0˚, 30˚, 60˚ and 90˚). The numerical study was to write the governing equation under an assumptions used Darcy law and Boussinesq’s approximation and then solved numerically using finite difference approximation. It was found that the averag

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Nov 11 2022
Journal Name
Eurasian Journal Of Physics, Chemistry And Mathematics
Influence of thermophoresis and thermal radiation on mass transfer and heat of Three Dimensional maxwell fluid in presence of Magnetic field
...Show More Authors

The study is about Maxwell , three dimensions of non – Newtonian fluid. Method of th Homotopy applied to analysis mass transfer and heat with thermophoresis effects. (Sc), Impact of therrmophoretic (𝜏), magnetic (M), Biot (γ), radiation (Rd),Schmidt Prandtle (Pr) parameters and ratio parameter(β) on concentration, temperature are offered in the paper.

Publication Date
Fri Oct 01 2021
Journal Name
Journal Of Engineering
Experimental Study of Natural Convection in a Closed Cavity (Static Type Domestic Fridge)
...Show More Authors

This work provides an analysis of the thermal flow and behavior of the (load-free) refrigerator compartment. The main goal was to compare the thermal behavior inside the refrigerator cavity to the freezer door (home refrigerator) effect and install a fan on the freezer door while neglecting the heat transmitted by thermal radiation. Moreover, the velocity distribution, temperature, and velocity path lines are theoretically studied. This was observed without affecting the shelves inside the cabinet and the egg and butter places on the refrigerator door as they were removed and the aluminum door replaced with a glass door. This study aims to expand our knowledge about the temperature and flow fields of this refrigerator mo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Feb 18 2022
Journal Name
Journal Of Engineering And Sustainable Development
CONJUGATE NATURAL CONVECTION IN A POROUS ENCLOSURE SANDWICHED BY FINITE WALLS AND SUBJECTED TO CONVECTION COOLING CONDITION
...Show More Authors

Steady conjugate natural convection heat transfers in a two-dimensional enclosure filled with fluid saturated porous medium is studied numerically. The two vertical boundaries of the enclosure are kept isothermally at same temperature, the horizontal upper wall is adiabatic, and the horizontal lower wall is partially heated. The Darcy extended Brinkman Forcheimer model is used as the momentum equation and Ansys Fluent software is utilized to solve the governing equations. Rayleigh number (1.38 ≤ Ra ≤ 2.32), Darcy number (3.9 * 10-8), the ratio of conjugate wall thickness to its height (0.025 ≤ W ≤ 0.1), heater length to the bottom wall ratio (1/4 ≤  ≤ 3/4) and inclination angle (0°, 30° and 60°) are the main consid

... Show More
View Publication
Scopus Crossref
Publication Date
Fri Dec 30 2011
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Laminar Free Convection in Three Dimensional Inclined Porous Annulus with Fins on the Inner Cylinder
...Show More Authors

An experimental and numerical study was carried out to investigate the heat transfer by natural convection in a three dimensional annulus enclosure filled with porous media (silica sand) between two inclined concentric cylinders with (and without) annular fins attached to the inner cylinder under steady state condition. The experiments were carried out for a range of modified Rayleigh number (0.2 ≤Ra*≤ 11) and extended to Ra*=500 for numerical study and for annulus inclination angle of (δ = 0˚, 30˚, 60˚ and 90˚). The numerical study was to give the governing equation under assumptions that used Darcy law and Boussinesq’s approximation and then it was solved numerically using finite difference approximation. It was found that t

... Show More
View Publication Preview PDF