The present work investigates the effect of magneto – hydrodynamic (MHD) laminar natural convection flow on a vertical cylinder in presence of heat generation and radiation. The governing equations which used are Continuity, Momentum and Energy equations. These equations are transformed to dimensionless equations using Vorticity-Stream Function method and the resulting nonlinear system
of partial differential equations are then solved numerically using finite difference approximation. A thermal boundary condition of a constant wall temperature is considered. A computer program (Fortran 90) was built to calculate the rate of heat transfer in terms of local Nusselt number, total mean Nusselt number, velocity distribution as well as temperature distribution for a selection of parameters sets
consisting of dimensionless heat generation parameter (0.0 ≤ Q ≤ 2.0), conduction – radiation parameter (0.0 ≤ N ≤ 10.0), and the dimensionless magneto hydrodynamic parameter (0.0 ≤ M ≤ 1.0). Numerical solution have been considered for a fluid Prandtl number fixed at (Pr=0.7), Rayleigh number (102 ≤ ≤ 105 ) l Ra . The results are shown reasonable representation to the relation between Nusselt number and Rayleigh number with other parameters (M, N and Q). Generally, Nu increase with increasing Ra, M, N and Q separately. When the MHD, N, and Q effect added to the heat transfer mechanism, the heat transfer rate increased and this effect increased with increasing in Ra, MHD, N, and Q. The effect of magneto hydrodynamic, heat generation and heat radiation on the rate of heat transfer is concluded by correlation
equations. The results are found to be in good agreement compared with the results of other researchers.
In this paper, certain types of regularity of topological spaces have been highlighted, which fall within the study of generalizations of separation axioms. One of the important axioms of separation is what is called regularity, and the spaces that have this property are not few, and the most important of these spaces are Euclidean spaces. Therefore, limiting this important concept to topology is within a narrow framework, which necessitates the use of generalized open sets to obtain more good characteristics and preserve the properties achieved in general topology. Perhaps the reader will realize through the research that our generalization preserved most of the characteristics, the most important of which is the hereditary property. Two t
... Show MoreThe purpose of this paper is to introduce a new type of compact spaces, namely semi-p-compact spaces which are stronger than compact spaces; we give properties and characterizations of semi-p-compact spaces.
Let R be a commutative ring with identity 1 and M be a unitary left R-module. A submodule N of an R-module M is said to be approximately pure submodule of an R-module, if for each ideal I of R. The main purpose of this paper is to study the properties of the following concepts: approximately pure essentialsubmodules, approximately pure closedsubmodules and relative approximately pure complement submodules. We prove that: when an R-module M is an approximately purely extending modules and N be Ap-puresubmodulein M, if M has the Ap-pure intersection property then N is Ap purely extending.
The security of message information has drawn more attention nowadays, so; cryptography has been used extensively. This research aims to generate secured cipher keys from retina information to increase the level of security. The proposed technique utilizes cryptography based on retina information. The main contribution is the original procedure used to generate three types of keys in one system from the retina vessel's end position and improve the technique of three systems, each with one key. The distances between the center of the diagonals of the retina image and the retina vessel's end (diagonal center-end (DCE)) represent the first key. The distances between the center of the radius of the retina and the retina vessel's end (ra
... Show MoreIn the present paper, we have introduced some new definitions On D- compact topological group and D-L. compact topological group for the compactification in topological spaces and groups, we obtain some results related to D- compact topological group and D-L. compact topological group.
It is shown that if a subset of a topological space (χ, τ) is δ-semi.closed, then it is semi.closed. By use this fact, we introduce the concept regularity of a topological space (χ, τ) via δ-semi.open sets. Many properties and results were investigated and studied. In addition we study some maps that preserve the δ-semi.regularity of spaces.
The main aim of this paper is to introduce the concept of a Fuzzy Internal Direct Product of fuzzy subgroups of group . We study some properties and prove some theorems about this concept ,which is very important and interesting of fuzzy groups and very useful in applications of fuzzy mathematics in general and especially in fuzzy groups.
In this work we shall introduce the concept of weakly quasi-prime modules and give some properties of this type of modules.
In this paper, a new type of supra closed sets is introduced which we called supra β*-closed sets in a supra topological space. A new set of separation axioms is defined, and its many properties are examined. The relationships between supra β*-Ti –spaces (i = 0, 1, 2) are studied and shown with instances. Additionally, new varieties of supra β*-continuous maps have been taken into consideration based on the supra β*-open sets theory.