Agent technology has a widespread usage in most of computerized systems. In this paper agent technology has been applied to monitor wear test for an aluminium silicon alloy which is used in automotive parts and gears of light loads. In addition to wear test monitoring، porosity effect on
wear resistance has been investigated. To get a controlled amount of porosity, the specimens have
been made by powder metallurgy process with various pressures (100, 200 and 600) MPa. The aim of
this investigation is a proactive step to avoid the failure occurrence by the porosity.
A dry wear tests have been achieved by subjecting three reciprocated loads (1000, 1500 and 2000)g
for three periods (10, 45 and 90)min. The weight difference after each test is immediately measured to
find the losing weight and wear rate for each specimen. Wear test was monitored online by two
sensors, force sensor to control the applied load, find friction force and coefficient of friction. The
sensor is an acoustic emission to detect crack initiations of the worn surface by transfers the emitted
ultrasonic waves from crack initiations to electric signals. Scanning electron microscope has been
used to examine the worn surfaces. The overall results include that the effect of pores depends on pore
shapes, sizes and concentrations.
There has been a growing interest in the use of chaotic techniques for enabling secure communication in recent years. This need has been motivated by the emergence of a number of wireless services which require the channel to provide very low bit error rates (BER) along with information security. As more and more information is transacted over wireless media, there has been increasing criminal activity directed against such systems. This paper investigates the feasibility of using chaotic communications over Multiple-Input-Multiple-Output (MIMO) channels. We have studied the performance of differential chaos shift keying (DCSK) with 2×2 Alamouti scheme and 2×1 Alamouti scheme for different chaotic maps over additive white Gaussian noise (
... Show MoreWe are used Bayes estimators for unknown scale parameter when shape Parameter is known of Erlang distribution. Assuming different informative priors for unknown scale parameter. We derived The posterior density with posterior mean and posterior variance using different informative priors for unknown scale parameter which are the inverse exponential distribution, the inverse chi-square distribution, the inverse Gamma distribution, and the standard Levy distribution as prior. And we derived Bayes estimators based on the general entropy loss function (GELF) is used the Simulation method to obtain the results. we generated different cases for the parameters of the Erlang model, for different sample sizes. The estimates have been comp
... Show MoreIn this work, the performance of the receiver in a quantum cryptography system based on BB84 protocol is scaled by calculating the Quantum Bit Error Rate (QBER) of the receiver. To apply this performance test, an optical setup was arranged and a circuit was designed and implemented to calculate the QBER. This electronic circuit is used to calculate the number of counts per second generated by the avalanche photodiodes set in the receiver. The calculated counts per second are used to calculate the QBER for the receiver that gives an indication for the performance of the receiver. Minimum QBER, 6%, was obtained with avalanche photodiode excess voltage equals to 2V and laser diode power of 3.16 nW at avalanche photodiode temperature of -10
... Show MoreWith the development of cloud computing during the latest years, data center networks have become a great topic in both industrial and academic societies. Nevertheless, traditional methods based on manual and hardware devices are burdensome, expensive, and cannot completely utilize the ability of physical network infrastructure. Thus, Software-Defined Networking (SDN) has been hyped as one of the best encouraging solutions for future Internet performance. SDN notable by two features; the separation of control plane from the data plane, and providing the network development by programmable capabilities instead of hardware solutions. Current paper introduces an SDN-based optimized Resch
This paper describes a new proposed structure of the Proportional Integral Derivative (PID) controller based on modified Elman neural network for the DC-DC buck converter system which is used in battery operation of the portable devices. The Dolphin Echolocation Optimization (DEO) algorithm is considered as a perfect on-line tuning technique therefore, it was used for tuning and obtaining the parameters of the modified Elman neural-PID controller to avoid the local minimum problem during learning the proposed controller. Simulation results show that the best weight parameters of the proposed controller, which are taken from the DEO, lead to find the best action and unsaturated state that will stabilize the Buck converter system performan
... Show MoreA novel fractal design scheme has been introduced in this paper to generate microstrip bandpass filter designs with miniaturized sizes for wireless applications. The presented fractal scheme is based on Minkowski-like prefractal geometry. The space-filling property and self-similarity of this fractal geometry has found to produce reduced size symmetrical structures corresponding to the successive iteration levels. The resulting filter designs are with sizes suitable for use in modern wireless communication systems. The performance of each of the generated bandpass filter structures up to the 2nd iteration has been analyzed using a method of moments (MoM) based software IE3D, which is widely adopted in microwave research and in
... Show MoreA true random TTL pulse generator was implemented and investigated for quantum key distribution systems. The random TTL signals are generated by low cost components available in the local markets. The TTL signals are obtained by using true random binary sequences based on registering photon arrival time difference registered in coincidence windows between two single – photon detectors. The true random TTL pulse generator performance was tested by using time to digital converters which gives accurate readings for photon arrival time. The proposed true random pulse TTL generator can be used in any quantum -key distribution system for random operation of the transmitters for these systems
Graphite coated electrodes (GCE) based on molecularly imprinted polymers were fabricated for the selective potentiometric determination of Glibenclamide (Glb). The molecularly imprinted (MIP) and nonimprinted (NIP) polymers were synthesized by radical bulk polymerization using (Glb.) as a template, acrylic acid (AA) and acrylamide (AAm) as monomers, ethylene glycol dimethacrylate (EGDMA) as a cross-linker and benzoyl peroxide (BPO) as an initiator. The imprinted membranes and the non-imprinted membranes were prepared using dioctyl phthalate (DOP) and Dibutylphthalate (DBP) as plasticizers in PVC matrix. The membranes were coated on graphite electrodes. The MIP electrodes using (AA) and (AAm) showed a near nernstian response with slopes o
... Show MoreThe accuracy of the Moment Method for imposing no-slip boundary conditions in the lattice Boltzmann algorithm is investigated numerically using lid-driven cavity flow. Boundary conditions are imposed directly upon the hydrodynamic moments of the lattice Boltzmann equations, rather than the distribution functions, to ensure the constraints are satisfied precisely at grid points. Both single and multiple relaxation time models are applied. The results are in excellent agreement with data obtained from state-of-the-art numerical methods and are shown to converge with second order accuracy in grid spacing.
Document source identification in printer forensics involves determining the origin of a printed document based on characteristics such as the printer model, serial number, defects, or unique printing artifacts. This process is crucial in forensic investigations, particularly in cases involving counterfeit documents or unauthorized printing. However, consistent pattern identification across various printer types remains challenging, especially when efforts are made to alter printer-generated artifacts. Machine learning models are often used in these tasks, but selecting discriminative features while minimizing noise is essential. Traditional KNN classifiers require a careful selection of distance metrics to capture relevant printing
... Show More