The vortex rate sensor is a fluidic gyroscope with no moving parts and can be used in very difficult
conditions like radiation, high temperature and noise with minimum cost of manufacturing and
maintenance. A vortex rate sensor made of wood has been designed and manufactured to study
theoretically and experimentally its static performance .A rig has been built to carry out the study,
the test carried out with three different air flow rates (100, 150, and 200 l/min).The results show that
the relation between the differential pressure taken from the sensor pickoff points and the angular
velocity of the sensor was linear.The present work involved theoretical and experimental study of
vortex rate sensor static characteristics .Vortex rate sensor has been designed and manufactured
with dimensions-:
Radius of vortex chamber= 140 mm, Radius of sink tube rs= 4.5 mm, the pickoff hole diameter =
2mm, Height of vortex chamber b= 19 mm, Height of pickoff pipe h= 25 mm.
Thin films ZrO2: MgO nanostructure have been synthesized by a radio frequency magnetron plasma sputtering technique at different ratios of MgO (0,6, 8 and 10)% percentage to be used as the gas sensor for nitrogen dioxide NO2. The samples were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and sensing properties were also investigated. The average particle size of all prepared samples was found lower than 33.22nm and the structure was a monoclinic phase. The distribution of grain size was found lower than36.3 nm and uninformed particles on the surface. Finally, the data of sensing properties have been discussed, where the
... Show MoreThe: currency Auction is one of the monetary policy tools created after 2003, in order to keep pace with the changes that the monetary and financial policies will witness from financial openness and expectations of high levels of liquidity after international economic restrictions. It is necessary to re-evaluate the work of the currency Auction from time to time and observation its efficiency in adjustment the exchange rate And its reflection on the general level of prices as one of the objectives of its inception, and during the analytical aspect, it was confirmed that the currency Auction for selling the currency had a major role in adjustment the exchange rate and controlling inflation levels, due to the market’s dependence
... Show MoreThe dye–semiconductor interface between N749 sensitized and zinc semiconductor (ZnSe) has been investigated and studied according to quantum transition theory with focusing on the electron transfer processes from the N749 sensitized (donor) to the ZnSe semiconductor (acceptor). The electron transfer rate constant and the orientation energy were studied and evaluated depended on the polarity of solvents according to refractive index and dielectric constant coefficient of solvents and ZnSe semiconductor. Attention focusing on the influence of orientation energies on the behavior of electron transfer rate constant. Differentdata of rate constant was discussion with orientation energy and effective driving energy for N749-ZnSe system.
... Show MoreIn this work, we have used the QCD dynamic scenario of the quark gluon interaction to investigate and study photon emission theoretically based on quantum theory. The QCD theory is implemented by deriving the photon emission rate equation of the state of ideal QGP at a chemical potential. The photon rate of the quark-gluon interaction has to be calculated for the anti up-gluon interaction in the g → γ system at the temperature of system with critical temperature ( 132.38, , and 198.57) MeV and photon energy ( GeV. We investigated a significant effect of critical temperature, strength coupling, and photon energy on the photon rate contribution. Here, the increased photon emission rate and decreased streng
... Show MoreThe Optical Fiber sensor based on the Surface Plasmon Resonance (SPR) technology has
been a successful performance sensing and presents high sensitivity. This thesis investigates the
performance of several structure of SPR sensor in field of refractive index and chemical
applications. A structure of Multi-Mode Fiber- Single Mode Fiber- Multi Mode Fiber (MMFSMF-MMF)
In this work a chemical sensor was built by using Plane Wave Expansion (PWE) modeling technique by filling the core of 1550 hollow core photonic crystal fiber with chloroform that has different concentrations after being diluted with distilled water. The minimum photonic bandgap width is.0003 and .0005 rad/sec with 19 and 7 cells respectively and a concentration of chloroform that filled these two fibers is 75%.
Abstract
Binary polymer blend was prepared by mechanical mixing method of unsaturated polyester resin with Nitrile Butadiene Rubber (NBR) with different weight ratios (0, 5, 10 and 15) % of (NBR). Tensile characteristics and wear rates of these blends were studied for all mixing ratios. The microstructure of fracture surfaces of the prepared samples were investigated by optical microscope. The results were showed that strain rates of the resin material increase after blending it with rubber while the ultimate tensile strength and Young’s modulus values of it will decrease. It is also noticed that the wear rate of resin decreases with increasing of (NBR) content.
Keywords:<
... Show MoreThis paper studies the combination fluid viscous dampers in the outrigger system to add supplementary damping into the structure, which purpose to remove the dependability of the structure to lower variable intrinsic damping. It works by connecting the central core, comprising either shear walls or braced frames, to the outer perimeter columns.
The modal considered is a 36 storey square high rise reinforced concrete building. By constructing a discrete lumped mass model, and using frequency-based response function, two systems of dampers, parallel and series systems are studied. The maximum lateral load at the top of the building is calculated, and this load w
... Show MoreThe charge transfer at C23H17F8N8O2PRu, C44H30BF4N5O4Ru, C56H52CL5N5OOsP2 and C76H88F80N24O11P10Ru4 nitrosyl complexes are investigation and studies theoretically using the quantum consideration. Charge transfer behavior largely rely to the electric properties of nitrosyl complexes system whose depending on the main important parameters for the transmission rate constant such that: orientation transition energy, overlapping coupling coefficient, driving force energy, height barrier and Temperature T (K). Data results have been evaluated using a MATLAB program. Results show that rate of charge transfer increases due to increases the orientation transition energy.