In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet function. This approach has been performed very successfully, with better results
obtained with the FFNN with modified wavelet activation function (FFMW) when compared with classic
FFNN with Sigmoid activation function (FFS) .One can notice from the simulation that the FFMW can be
capable of identifying the 4-Links of SCARA robot more efficiently than the classic FFS.
Oxazepine [1] is non – nomologous seven –member ring that contain two netroatoms (oxygen and nitrogen ). Meanwhile diazepine [2] contains to nitrogen atoms in seven – member ring.
Diazepam (valium) [3] is used to relive anxiety tension associated with anxiety disorder and muscle spasms (1, 2, 3
... Show MoreA new ligand [N-(3-acetylphenylcarbamothioyl)-4-methoxybenzamide](MAA) was synthesized by reaction of 4-methoxybenzoylisothiocyanate with 3-aminoacetophenone,The ligand was characterized by elemental microanalysis C.H.N.S, FT-IR, UV-Vis and 1H,13CNMR spectra, some transition metals complexes of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption, From obtained results the molecular formula of all prepared complexes were [M(MAA)2(H2O)2]Cl2 (M+2 =Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral
Transactions on Engineering and Sciences
In Automatic Speech Recognition (ASR) the non-linear data projection provided by a one hidden layer Multilayer Perceptron (MLP), trained to recognize phonemes, and has previous experiments to provide feature enhancement substantially increased ASR performance, especially in noise. Previous attempts to apply an analogous approach to speaker identification have not succeeded in improving performance, except by combining MLP processed features with other features. We present test results for the TIMIT database which show that the advantage of MLP preprocessing for open set speaker identification increases with the number of speakers used to train the MLP and that improved identification is obtained as this number increases beyond sixty.
... Show MoreThe objective of this work is to design and implement a cryptography system that enables the sender to send message through any channel (even if this channel is insecure) and the receiver to decrypt the received message without allowing any intruder to break the system and extracting the secret information. In this work, we implement an interaction between the feedforward neural network and the stream cipher, so the secret message will be encrypted by unsupervised neural network method in addition to the first encryption process which is performed by the stream cipher method. The security of any cipher system depends on the security of the related keys (that are used by the encryption and the decryption processes) and their corresponding le
... Show MoreIn this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that
... Show MoreThis study was aimed to investigate the load of bacterial contaminant in fresh meat with different types of bacteria.One handered and seven samples were collected from different regions of Baghdad . These samples included 37 of fresh beef 70 of fresh sheep meat. All samples were cultured on different selective media to identitfy of contaminated bacteria .The result revealed that The percentage of bacterial isolate from raw sheep meat were, % 23.8of StreptococcusgroupD,29.4 % of Staphylococcus aureus ,14.7 % of E.coli , %4.9of Salmonella spp, ,%3.5 of pseudomonas aeruginosa, %14.7.%14.7 of Proteus spp.% 2.1 of Listeria spp while the raw beef meat content %5.55 of Staphylococcus aureus, %8.14 of streptococcus group D , %5.18 %1.85 of E.coli,
... Show MoreInvestigating gender differences based on emotional changes becomes essential to understand various human behaviors in our daily life. Ten students from the University of Vienna have been recruited by recording the electroencephalogram (EEG) dataset while watching four short emotional video clips (anger, happiness, sadness, and neutral) of audiovisual stimuli. In this study, conventional filter and wavelet (WT) denoising techniques were applied as a preprocessing stage and Hurst exponent