In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet function. This approach has been performed very successfully, with better results
obtained with the FFNN with modified wavelet activation function (FFMW) when compared with classic
FFNN with Sigmoid activation function (FFS) .One can notice from the simulation that the FFMW can be
capable of identifying the 4-Links of SCARA robot more efficiently than the classic FFS.
In this paper, we discuss physical layer security techniques in downlink networks, including eavesdroppers. The main objective of using physical layer security is delivering a perfectly secure message from a transmitter to an intended receiver in the presence of passive or active eavesdroppers who are trying to wiretap the information or disturb the network stability. In downlink networks, based on the random feature of channels to terminals, opportunistic user scheduling can be exploited as an additional tool for enhancing physical layer security. We introduce user scheduling strategies and discuss the corresponding performances according to different levels of channel state information (CSI) at the base station (BS). We show that the avai
... Show MorePermanent deformation, fatigue and thermal cracking are the three typical distresses of flexible pavement. Using hydrated lime (HL) into the conventional limestone mineral additive has been widely practiced, including in Europe, to improve the mechanical properties of hot mix asphalt (HMA) concrete and as the result the durability of the constructed pavement. Large number of experimental studies have been reported to find the optimum addition of HL for the improvement on HMA concrete mechanical properties, moisture susceptibility and fatigue resistance. Pavement in service is under complex thermomechanical stress-strain conditions due to coupled atmospheric and surrounding environment temperature variation and the traffic loading. To predic
... Show MoreTransition metal complexes of Co(II), Ni(II), Cu(II), and Zn(II) with 2-(4-antipyrine azo)-4-nitroaniline derived from 4-aminoantipyrine and 4-nitroaniline were synthesized. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR, UV-Vis and 1HNMR, as well as magnetic susceptibility and conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1×10-4 - 3×10-4 M). High molar absorbtivity of the complex solutions were observed. From the analytical data, the stoichiometry of the complexes has been found to be 1:2 (metal:ligand). On the basis of physicochemical data octa
... Show MoreCapparis spinosa is one of the oldest genera grown in Iraqi land with worldwide traditional medicinal uses beside the culinary uses. These uses were own to the presence of many phytochemical including flavonoids, polyphenols. Among the reported polyphenolic acids are caffeic, chlorogenic and ferulic acids with well-known powerful antioxidant properties. The present work aimed to identify the presence of these polyphenolic acids in Iraqi caper naturally gown in the rural area of middle Iraq following standard chromatographic procedures. Aerial parts of the plant (buds, berries and leaves) were extracted with hydroalcoholic solvent by maceration method. Thin layer chromatographic techniques and HPLC analysis were performed to iden
... Show MoreIdentifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show MoreIn this paper, the human robotic leg which can be represented mathematically by single input-single output (SISO) nonlinear differential model with one degree of freedom, is analyzed and then a simple hybrid neural fuzzy controller is designed to improve the performance of this human robotic leg model. This controller consists from SISO fuzzy proportional derivative (FPD) controller with nine rules summing with single node neural integral derivative (NID) controller with nonlinear function. The Matlab simulation results for nonlinear robotic leg model with the suggested controller showed that the efficiency of this controller when compared with the results of the leg model that is controlled by PI+2D, PD+NID, and F
... Show More