Preferred Language
Articles
/
joe-2996
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet function. This approach has been performed very successfully, with better results
obtained with the FFNN with modified wavelet activation function (FFMW) when compared with classic
FFNN with Sigmoid activation function (FFS) .One can notice from the simulation that the FFMW can be
capable of identifying the 4-Links of SCARA robot more efficiently than the classic FFS.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Apr 30 2019
Journal Name
International Journal Of Environmental Research
A Comparative Study for the Identification of Superior Biomass Facilitating Biosorption of Copper and Lead Ions: A Single Alga or a Mixture of Algae
...Show More Authors

View Publication
Scopus (13)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Wed Oct 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Fully Automated Magnetic Resonance Detection and Segmentation of Brain using Convolutional Neural Network
...Show More Authors

     The brain's magnetic resonance imaging (MRI) is tasked with finding the pixels or voxels that establish where the brain is in a medical image The Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents. Next, the lines are separated into characters. In the Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents case of fonts with a fixed MRI width, the gaps are analyzed and split. Otherwise, a limited region above the baseline is analyzed, separated, and classified. The words with the lowest recognition score are split into further characters x until the result improves. If this does not improve the recognition s

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Engineering
Artificial Neural Network Models to Predict the Cost and Time of Wastewater Projects
...Show More Authors

Infrastructure, especially wastewater projects, plays an important role in the life of residential communities. Due to the increasing population growth, there is also a significant increase in residential and commercial facilities. This research aims to develop two models for predicting the cost and time of wastewater projects according to independent variables affecting them. These variables have been determined through a questionnaire distributed to 20 projects under construction in Al-Kut City/ Wasit Governorate/Iraq. The researcher used artificial neural network technology to develop the models. The results showed that the coefficient of correlation R between actual and predicted values were 99.4% and 99 %, MAPE was

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Face Recognition and Emotion Recognition from Facial Expression Using Deep Learning Neural Network
...Show More Authors
Abstract<p>Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.</p>
View Publication
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Sat Sep 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
E·voiution of Topology and Wei,ght-s. of Neural Netwo·rks. Using.Semi Genetic Operators
...Show More Authors

Evolutionary·co.nipimit'iQo  is  a· c'!a s of glbbal ·searb  techniq

based on the lei.lffi:ing process ,of  g po_pl)'latiog-·of pote.n:tiaf solutions to

a  ven probl_e-ID'.  thahas .been  succe_ssfull'y  applied    19  v ety of

prQblern, lll thls paper a riew approach  to. design lie_ ural ne'twQj:ks

based oh ev.ohltipnary -computa.tio.rt i·s pre.Seri-L  _A   tine-f.!£ clurP.mosome

'repr:esentati:on  or the etwor}< i_s.  u_secl: 'Q.y  genetiC  gperntb_l:s, whicQ

allow th¢  voJution of.the   chitecture and' weight-s Â

... Show More
View Publication Preview PDF
Publication Date
Sun May 01 2022
Journal Name
Songklanakarin J. Sci. Technol.
Molecular identification of three novel species of Ganoderma from different habitats in Mosul, Iraq
...Show More Authors

Reishi Mushroom, Ganoderma, is considered one of important wood-decaying medicinal mushrooms. This study aimed to identify three samples of this genus in Mosul city in February and April 2019. Three species of Ganoderma were collected from three various trees including Eucalyptus, Morus, and Olea (olive) in Mosul City, Northern Iraq. Their identifications and their DNA sequences were genetically identified by using PCR techniques according to detect nuclear ribosomal internal transcribed spacer (ITS) regions. Results exhibited the finding of Ganoderma resinaceum, Ganoderma applanatum, and Ganoderma sp. This study is first attempt to identify Reishi Mushroom by molecular methods in Iraq. Thus, the current study is considered new good d

... Show More
Preview PDF
Scopus (1)
Scopus
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
Applying some hybrid models for modeling bivariate time series assuming different distributions for random error with a practical application
...Show More Authors

Abstract

  Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous varia

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun May 06 2012
Journal Name
Al-rafidain Journal For Sport Sciences
Analysis study (Guessing and techntion of self consistent degree) in choosing the perfect way from different method for two kinds rotation (orthogonal & oblique) in factore
...Show More Authors

The factorial analysis method consider a advanced statistical way concern in different ways like physical education field and the purpose to analyze the results that we want to test it or measure or for knowing the dimensions of some correlations between common variables that formed the phenomenon in less number of factors that effect on explanation , so we must depend use the self consistent that achieved for reaching that basic request. The goal of this search that depending on techntion of self consistent degree guessing for choosing perfect way from different methods for (orthogonal & oblique) kinds in physical education factor studies and we select some of references for ( master & doctoral) and also the scientific magazine and confere

... Show More
Preview PDF
Publication Date
Mon Mar 09 2015
Journal Name
Monthly Notices Of The Royal Astronomical Society
A reliable iterative method for solving Volterra integro-differential equations and some applications for the Lane–Emden equations of the first kind
...Show More Authors

View Publication
Crossref (7)
Crossref