In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet function. This approach has been performed very successfully, with better results
obtained with the FFNN with modified wavelet activation function (FFMW) when compared with classic
FFNN with Sigmoid activation function (FFS) .One can notice from the simulation that the FFMW can be
capable of identifying the 4-Links of SCARA robot more efficiently than the classic FFS.
Infrastructure, especially wastewater projects, plays an important role in the life of residential communities. Due to the increasing population growth, there is also a significant increase in residential and commercial facilities. This research aims to develop two models for predicting the cost and time of wastewater projects according to independent variables affecting them. These variables have been determined through a questionnaire distributed to 20 projects under construction in Al-Kut City/ Wasit Governorate/Iraq. The researcher used artificial neural network technology to develop the models. The results showed that the coefficient of correlation R between actual and predicted values were 99.4% and 99 %, MAPE was
... Show MoreFace recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreDensity functional theory calculations are employed to investigate the impact of edifenphos molecule on the reactivity and electronic sensitivity of pure calcium oxide (CaO) nanocluster. The strong adsorption of edifenphos molecule on CaO nanocluster occurs by the sulfur head of the adsorbate, and the amount of the energy of this adsorption is around − 84.40 kcal/mol. The adsorption of edifenphos molecules results in a decrease in the values of Eg of CaO from 4.67 to 3.56 eV, as well as an increase in the electrical conductance. Moreover, the work function of CaO nanocluster is significantly affected, which changes the current of the field emission electron. Eventually, the recovery time is calculated around 99 ms at ambient temperature f
... Show MoreAn approximate solution of the liner system of ntegral cquations fot both fredholm(SFIEs)and Volterra(SIES)types has been derived using taylor series expansion.The solusion is essentailly
The present work focuses on examining the strategy of cognitive trips and the Arabic language teachers’ training needs of such a strategy when teaching Arabic language courses in the Saudi Arabia Kingdom. To achieve the objective of the study, and check whether this strategy is used in lesson planning, lesson teaching, or lesson assessment, a descriptive approach and a questionnaire have been adopted. The researchers used a number of statistical tools, and chose a purposive sample, which consists of (58) Arabic language teachers from Saudi Arabia Kingdom. Results have shown that the training needs of Arabic language teachers for implemining the strategy of cognitive journeys while teaching Arabic language courses came in the following
... Show More