Theoretical and experimental investigations have been carried out on developing laminar
combined free and forced convection heat transfer in a vertical concentric annulus with uniformly
heated outer cylinder (constant heat flux) and adiabatic inner cylinder for both aiding and opposing
flows. The theoretical investigation involved a mathematical modeling and numerical solution for
two dimensional, symmetric, simultaneously developing laminar air flows was achieved. The
governing equations of motion (continuity, momentum and energy) are solved by using implicit
finite difference method and the Gauss elimination technique. The theoretical work covers heat flux
range from (200 to 1500) W/m2, Re range from 400 to 2000 and (1.36×105 ≤ Ra ≤ 1.1×107) with
radius ratio of 0.555 which is the same radius ratio used in the experimental part of this study and
Pr=0.7. The experimental work includes construct a rig consists essentially of an annulus with
uniformly heated outer cylinder and adiabatic inner cylinder to give clear insight into heat transfer
process and compare its results with that obtained in theoretical part, the range of the study are
(Re= 383, 724, 1000, 1500) and heat flux equal to (q =370, 422, 588, 980) W/m2. Numerical results
were represented by the temperature profile, axial velocity profile, outer surface temperature and
the distribution of local Nusselt number along the dimensionless axial distance. The velocity and
temperature profile results have revealed that the secondary flow created by natural convection have
significant effects on the heat transfer process. Results reveal also that the experimental local
Nusselt number along the annulus follows the same trend as present theoretical results with mean
difference 10.23 %.
A new hetrocyclic liquid crystal compounds containing 1,3,4-oxadiazole with different substituted in para position (Bromo, Chloro, Nitro and Methyl) were synthesized and characterized by melting points, FTIR Spectroscopy and 1HNMR spectroscopy for [Cl-SR6] and [NO2-SR6] compounds. The liquid crystalline properties of the synthesized compounds were studied by using hot-stage polarizing optical microscopy (POM), so they determined the transition enthalpies and entropies by using differential scanning calorimetery (DSC). All of the compounds show mesomorphic properties. The compounds [Br-SR6], [Cl-SR6] and [NO2SR6] exhibit an enantiotropic dimorphism smectic (Sm) phase, while the compounds [MeSR6] showed nematic (N) phase throw cooli
... Show MoreBackground: Ulcerative colitis (UC) is an inflammatory bowel disease restricted to the large intestine, characterized by superficial ulceration. It is a progressive and chronic disease requiring long-term treatment. Although its etiology remains unknown, it is suggested that environmental factors influence genetically susceptible individuals, leading to the onset of the disease. (C-X-C) ligand 9 is a chemokine that belongs to the CXC chemokine family, it plays a role in the differentiation of immune cells such as cytotoxic lymphocytes, natural killer T cells, and macrophages. Its interaction with its corresponding receptor CXCR3 which is expressed by a variety of cells such as effector T cells, CD8+ cytotoxic T cells, and macrophage
... Show MoreAbstract:
The current research aims to distinguish the talent for the kindergarten
children and its relation with some changes . The research included ( 170 )
child (male , female ) from the kindergarten children on the year 2009 – 2010
the researcher had used PRED meter to achieve the goals of this research
after being sure from the honesty and the prove and the ( person ) connection
coefficient had been used to discover the relation between the talent and the
changes which had been mentioned in the research . The result proved that
the children had talents the toys and the educational scientifically scholarship
finally the researcher had presented some recommendations and suggestions
for other studies .<
The coefficient of charge transfer at heterogeneous devices of Au metal with a well-known dyeis investigations using quantum model.Four different solvent are used to estimation the effective transition energy. The potential barrier at interface of Au and dye has been determined using effective transition energy and difference between the Fermi energy of Au metal and ionization energy of dye. A possible transfer mechanism cross the potential barrier dyeand coupling strength interaction between the electronic levels in systems of Au and is discussed.Differentdata of effective transition energy and potential barrier calculations suggest that solvent is more suitable to binds Au with dye.
ABSTRACT. 4-Sulfosalicylic acid (SSA) was used as a ligand to prepare new triphenyltin and dimethyl-tin complexes by condensation with the corresponding organotin chloride salts. The complexes were identified by different techniques, such as infrared spectra (tin and proton), magnetic resonance, and elemental analyses. The 119Sn-NMR was studied to determine the prepared complexes' geometrical shape. Two methods examined the antioxidant activity of (SSA) and prepared complexes; Free radical scavenging activity (DPPH) and CUPRRAC methods. Tri and di-tin complexes gave high percentage inhibition than ligands with both methods due to tin moiety; the triphenyltin carboxylate complex was the best compared with the others. Also, antibacter
... Show MoreThe study was conducted at the fields of the Department of Horticulture and Landscape Gardening, College of Agriculture Engineering Sciences, University of Baghdad. During the spring 2017. All the recommended practices were followed during experimentation. The experimental material consisted four Genotype it is Batraa, Btera, Mosulle, and local selection. The experiment was applied in Randomized Complete Block Design (RCBD). The objectives of Study were to estimate the some genetic parameters and path coefficient for some traits Okra, The results of statistical analysis for these genotypes were highly significant differences for all traits except the traits number of leaves, the numbe
In this study, mean free path and positron elastic-inelastic scattering are modeled for the elements hydrogen (H), carbon (C), nitrogen (N), oxygen (O), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K) and iodine (I). Despite the enormous amounts of data required, the Monte Carlo (MC) method was applied, allowing for a very accurate simulation of positron interaction collisions in live cells. Here, the MC simulation of the interaction of positrons was reported with breast, liver, and thyroid at normal incidence angles, with energies ranging from 45 eV to 0.2 MeV. The model provides a straightforward analytic formula for the random sampling of positron scattering. ICRU44 was used to compile the elemental composition data. In this
... Show More