The Al Mishraq site has been the subject of many scientific studies for the period before and
after the fire in 2003. Five visits to the site were conducted twice in 2003 for general fact-finding, twice
in 2004, and once in 2005 for detailed sampling and monitoring. Desk-based research and laboratory analysis of soil and water samples results indicate that surface water and groundwater pollution from Al Mishraq site was significant at the time of its operation. The primary pollution source was the superheated water injection process, while the principal receptor is the River Tigris. Now that the plant is idle, this source is absent. Following the June 2003 sulphur fire, initial investigations indicate that short damage to
vegetation was severe close to the plant but there is no evidence of widespread or significant long-term
damage. Rainwater and drainage ponds and gullies close to the sulphur processing and acid contain
hazardous levels of acid. Runoff from these areas may be affecting local water quality. There is regional moderate groundwater contamination by sulphate and hydrogen sulphide, but much of this may be naturally sourced. The site in its current state represents a low risk to human health and the environment
principally due to the acidic surface water ponds, but in the absence of corrective action, the hazard
levels may be elevated after some decades.
The mechanism of the electronic flow rate at Al-TiO2 interfaces system has been studied using the postulate of electronic quantum theory. The different structural of two materials lead to suggestion the continuum energy level for Al metal and TiO2 semiconductor. The electronic flow rate at the Al-TiO2 complex has affected by transition energy, coupling strength and contact at the interface of two materials. The flow charge rate at Al-TiO2 is increased by increasing coupling strength and decreasing transition energy.
The purpose of this study is to elucidate the microfacies and the biozones present in the studied rocks as well as to determine their environments or deposition. The study depends mainly on the benthonic foraminiferal assemblages identified from (27) rock thin sections made available from an outcrop at Wadi Banat Al-Hassan area in the Upper Euphrates Valley. X-Ray diffraction was also used to determine the type of carbonate minerals present in the studied rocks.
Trip generation is the first phase in the travel forecasting process. It involves the estimation of the
total number of trips entering or leaving a parcel of land per time period (usually on a daily basis);
as a function of the socioeconomic, locational, and land-use characteristics of the parcel.
The objective of this study is to develop statistical models to predict trips production volumes for a
proper target year. Non-motorized trips are considered in the modeling process. Traditional method
to forecast the trip generation volume according to trip rate, based on family type is proposed in
this study. Families are classified by three characteristics of population social class, income, and
number of vehicle ownersh
The gamma dose rates and specific activity of 137Cs, 60Co and 40K in
samples of soil taken from places near the landfill radiation at Al-
Tuwaitha site were measured using a portable NaI(Tl) detector. The
results of gamma dose rates in samples were ranged from 52.6
nGy.h-1 to 131nGy.h-1. Then the specific activity of 137Cs, 60Co and
40K in soil were determined using high pure germanium (HPGe)
detector. The specific activities were varied from 1.9 to 115500 Bq.
kg-1 for 137Cs, from 6.37 to 616.5 Bq. kg-1 for 60Co, and from 3 to
839.5 Bq. kg-1 for 40K. The corresponding health risk for the annual
effective dose equivalent varied from 1.85×10-14 to 15.7mSv/y. The
results were compared with various internationa
In the present study the radon concentration was measured in indoor places by the RAD7 (radon detector) was in some locations at Al-Tuwaitha nuclear site and some surrounding areas for the duration from 13/10/2016 to 2/1/2017 and the measurement of the indoor radon concentration ranged from (4.96±4.4 to 102±25) Bq/m3. The high value of radon has been found at decommissioning directorate /emergency room, which is lower than the action value recommended by the Environmental Protection Agency (EPA) which is (148 Bq/m3) while the lowest value has been founded in central laboratories directorate \ models room. These values were used to calculate the annual effective dose and the health risks for cells bronchial which caused by the inhalatio
... Show MoreObjectives: To evaluate the families’ attitudes toward environment pollution, and determine the relationship
between families’ attitudes towards environment pollution and their demographic characteristics of age,
education, type of family, and socioeconomic status.
Methodology: A descriptive design is carried throughout the present study to evaluate families’ attitudes toward
environment pollution for the period of October 5th2013 to May 7th2014. A non-probability "purposive" sample of
(110) families’ is selected. The sample is comprised of two groups; (75) urban families’ and (35) rural ones. An
evaluation tool is designed and constructed for the purpose of the study. It is consisted of (4) main parts;
dem
The research aims to clarify the role that psychological ownership, through its dimensions, plays in deterring the effects of toxic leadership, through its dimensions, in the Ministry of Industry and Minerals. The research started with a basic problem represented by the following question: "Using psychological ownership and its application in deterring the negative effects of toxic leadership." The research used the descriptive-analytical method. The sample was randomly selected from workers in some selected companies affiliated with the Ministry of Industry and Minerals in Baghdad, and the sample size reached 124 individuals. One of the most important results is that there is an effect of the psychological ownership variable, based on the
... Show MoreThe present investigation is concerned for the purification of impure zinc oxide (80-85 wt %) by using petroleum coke
(carbon content is 76 wt %) as reducing agent for the impure zinc oxide to provide pure zinc vapor, which will be
oxidized later by air to the pure zinc oxide.
The operating conditions of the reaction were studied in detail which are, reaction time within the range (10 to 30 min),
reaction temperature (900 to 1100 oC), air flow rate (0.2 to 1 l/min) and weight percentage of the reducing agent
(petroleum coke) in the feed (14 to 30 wt %).
The best operating conditions were (30 min) for the reaction time, (1100 oC) for the reaction temperature, (1 l/min) for
the air flow rate, and (30 wt %) of reducing