Date stones were used as precursor for the preparation of activated carbons by chemical
activation with ferric chloride and zinc chloride. The effects of operating conditions represented
by the activation time, activation temperature, and impregnation ratio on the yield and adsorption
capacity towards methylene blue (MB) of prepared activated carbon by ferric chloride activation
(FAC) and zinc chloride activation (ZAC) were studied. For FAC, an optimum conditions of 1.25
h activation time, 700 °C activation temperature, and 1.5 impregnation ratio gave 185.15 mg/g
MB uptake and 47.08 % yield, while for ZAC, 240.77 mg/g MB uptake and 40.46 % yield were
obtained at the optimum conditions of 1.25 h activation time, 500 °C activation temperature, and
2 impregnation ratio. The equilibrium data for MB adsorption on prepared activated carbons at
optimum conditions were well represented by the Langmuir isotherm model, giving maximum
MB uptake of 304.51 and 387.54 mg/g for FAC and ZAC, respectively. Also, the results showed
that the surface area and iodine number of activated carbon prepared by activation with ferric
chloride at optimum conditions were 780.06 m2/g and 761.40 mg/g, respectively. While 1045.61
m2/g surface area and 1008.86 mg/g iodine number were obtained for ZAC prepared at optimum
conditions.
Recently the use of nanofluids represents very important materials. They are used in different branches like medicine, engineering, power, heat transfer, etc. The stability of nanofluids is an important factor to improve the performance of nanofluids with good results. In this research two types of nanoparticles, TiO2 (titanium oxide) and γ-Al2O3 (gamma aluminum oxide) were used with base fluid water. Two-step method were used to prepare the nanofluids. One concentration 0.003 vol. %, the nanoparticles were examined. Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray diffraction (XRD) were used to accomplish these tests. The stability of the two types of nanofluids is measured by
... Show MoreAbstract
Locally natural occurring Iraqi rocks of Bauxite and Porcelanite (after pre calcinations at 1000oC for 1hr) were used, with the addition of different proportions of MgO and Al2O3, to prepare refractory materials. The effects of these additives on the physical and thermal properties of the prepared refractories were investigated.
Many batches of Bauxite/MgO, Bauxite/Al2O3, Bauxite/MgO/Al2O3, and Porcelanite/ MgO/Al2O3 were prepared. The mixture is milled and classified into different size fractions; fine (less than 45μm) 40%, middle (45-75μm) 40%, and coarse (75-106μm) 20% .
... Show MoreThe gas sensing properties of Co3O4 and Co3O4:Y nano structures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for Co3O4 and Co3O4:Y thin films. XRD analysis shows that all films are polycrystalline in nature, having a cubic structure, and the crystallite size is (11.7)nm for cobalt oxide and (9.3)nm for the Co3O4:10%Y. The SEM analysis of thin films obviously indicates that Co3O4 possesses a nanosphere-like structure and a flower-like structure for Co3O4:Y.
The sen
... Show MoreIn this work, porous silicon gas sensor hs been fabricated on n-type crystalline silicon (c-Si) wafers of (100) orientation denoted by n-PS using electrochemical etching (ECE) process at etching time 10 min and etching current density 40 mA/cm2. Deposition of the catalyst (Cu) is done by immersing porous silicon (PS) layer in solution consists of 3ml from (Cu) chloride with 4ml (HF) and 12ml (ethanol) and 1 ml (H2O2). The structural, morphological and gas sensing behavior of porous silicon has been studied. The formation of nanostructured silicon is confirmed by using X-ray diffraction (XRD) measurement as well as it shows the formation of an oxide silicon layer due to chemical reaction. Atomic force microscope for PS illustrates that the p
... Show MoreThis investigation was carried out to study the treatment and recycling of wastewater in the cotton textile industry for an effluent containing three dyes: direct blue, sulphur black and vat yellow. The reuse of such effluent can only be made possible by appropriate treatment method such as chemical coagulation. Ferrous and ferric sulphate with and without calcium hydroxide were employed in this study as the chemical coagulants.
The results showed that the percentage removal of direct blue ranged between 91.4 and 94 , for sulphur black ranged between 98.7 and 99.5 while for vat yellow it was between 97 and 99.
The ability to produce load-bearing masonry units adopting ACI 211.1 mix design using (1:3.2:2.5) as (cement: fine aggregate: coarse aggregate) with slump range (25-50mm) which can conform (dimension, absorption, and compressive strength) within IQS 1077/1987 requirements type A was our main goal of the study. The ability to use low cement content (300 kg/m3) to handle our market price products since the most consumption in wall construction for low-cost buildings was encouraging. The use of (10 and 20%) of LECA as partial volume replacement of coarse aggregate to reduce the huge weight of masonry blocks can also be recommended. The types of production of the load-bearing masonry units were A and B for (
... Show MoreThis study includes analytical methods for the determination of the drug amoxicillin trihydrate (Amox.) in some pharmaceutical preparations using Cobalt ion (Co(II)) as complexing metal. The best conditions for complexation were: the reaction time was 20 minutes, pH=1.5 and the best temperature of reaction was 70 ËšC. Benzyl alcohol was the best solvent for extraction the complex.
Keywords: Amoxicillin, Cobalt(II), Complex, Molar ratio.
A simple, accurate and sensitive spectrophotometric method for the determinaion of epinephrine is described . The method is based on the coordination of Pr (III) with epinephrine at pH 6. Absorbance of the resulting orange yellow complex is measured at 482 nm . A graph of absorbance versus concentrations shows that beer 's low is obeyed over the concentration range (1-50)mg.ml-1 of epinephrine with molar absorpitivity of ( 2.180x103 L.mol-1.cm-1 ), a sandell sensitivity of (0.084 mg.cm-2 ), a relative error of (-2.83%) , a corrolation coffecient (r= 0.9989) and recovery % ( 97.03 ± 0.75 ) depending on the concentration.This method is applied to analyse EP in several commercially available pharmaceutical preparations
... Show MoreThis paper focuses firstly on the production of monomers bis (2-hydroxyethyl) terephthalate (BHET) and oligomers by using two different form of MgO light active and Nano Magnesium oxide with different weight ratio (0.15, 0.25 and 0.5) by using chemical recycling glass condenser at 190 ˚C. The second purpose is to study the effect of catalyst ratio, time of reaction and yield of products of the product. Elemental analysis for Carbon –Hydrogen and Nitrogen (CHN), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) have been investigated. Results indicated the catalytic activity was found to correlate with surface area; however, LA MgO has shown an exceptional activity, still it is h
... Show More