Date stones were used as precursor for the preparation of activated carbons by chemical
activation with ferric chloride and zinc chloride. The effects of operating conditions represented
by the activation time, activation temperature, and impregnation ratio on the yield and adsorption
capacity towards methylene blue (MB) of prepared activated carbon by ferric chloride activation
(FAC) and zinc chloride activation (ZAC) were studied. For FAC, an optimum conditions of 1.25
h activation time, 700 °C activation temperature, and 1.5 impregnation ratio gave 185.15 mg/g
MB uptake and 47.08 % yield, while for ZAC, 240.77 mg/g MB uptake and 40.46 % yield were
obtained at the optimum conditions of 1.25 h activation time, 500 °C activation temperature, and
2 impregnation ratio. The equilibrium data for MB adsorption on prepared activated carbons at
optimum conditions were well represented by the Langmuir isotherm model, giving maximum
MB uptake of 304.51 and 387.54 mg/g for FAC and ZAC, respectively. Also, the results showed
that the surface area and iodine number of activated carbon prepared by activation with ferric
chloride at optimum conditions were 780.06 m2/g and 761.40 mg/g, respectively. While 1045.61
m2/g surface area and 1008.86 mg/g iodine number were obtained for ZAC prepared at optimum
conditions.
This paper provides a four-stage Trigonometrically Fitted Improved Runge-Kutta (TFIRK4) method of four orders to solve oscillatory problems, which contains an oscillatory character in the solutions. Compared to the traditional Runge-Kutta method, the Improved Runge-Kutta (IRK) method is a natural two-step method requiring fewer steps. The suggested method extends the fourth-order Improved Runge-Kutta (IRK4) method with trigonometric calculations. This approach is intended to integrate problems with particular initial value problems (IVPs) using the set functions and for trigonometrically fitted. To improve the method's accuracy, the problem primary frequency is used. The novel method is more accurate than the conventional Runge-Ku
... Show MoreIn this study, mean free path and positron elastic-inelastic scattering are modeled for the elements hydrogen (H), carbon (C), nitrogen (N), oxygen (O), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K) and iodine (I). Despite the enormous amounts of data required, the Monte Carlo (MC) method was applied, allowing for a very accurate simulation of positron interaction collisions in live cells. Here, the MC simulation of the interaction of positrons was reported with breast, liver, and thyroid at normal incidence angles, with energies ranging from 45 eV to 0.2 MeV. The model provides a straightforward analytic formula for the random sampling of positron scattering. ICRU44 was used to compile the elemental composition data. In this
... Show MoreThis research takes up address the practical side by taking case studies for construction projects that include the various Iraqi governorates, as it includes conducting a field survey to identify the impact of parametric costs on construction projects and compare them with what was reached during the analysis and the extent of their validity and accuracy, as well as adopting the approach of personal interviews to know the reality of the state of construction projects. The results showed, after comparing field data and its measurement in construction projects for the sectors (public and private), the correlation between the expected and actual cost change was (97.8%), and this means that the data can be adopted in the re
... Show MoreThe License Plate (LP), is a rectangular metal plate that contains numbers and letters. This plate is fixed onto the vehicle's body. It is used as a mean to identify the vehicle. The License Plate Recognition (LPR) system is a mean where a vehicle can be identified automatically using a computer system. The LPR has many applications, such as security applications for car tracking, or enforcing control on vehicles entering restricted areas (such as airports or governmental buildings). This paper is concerned with introducing a new method to recognize the Iraqi LPs using local vertical and horizontal projections, then testing its performance. The attained success rate reached 99.16%, with average recognition time around 0.012 second for re
... Show MoreSteganography is defined as hiding confidential information in some other chosen media without leaving any clear evidence of changing the media's features. Most traditional hiding methods hide the message directly in the covered media like (text, image, audio, and video). Some hiding techniques leave a negative effect on the cover image, so sometimes the change in the carrier medium can be detected by human and machine. The purpose of suggesting hiding information is to make this change undetectable. The current research focuses on using complex method to prevent the detection of hiding information by human and machine based on spiral search method, the Structural Similarity Index Metrics measures are used to get the accuracy and quality
... Show MoreIn this paper we shall generalize fifth explicit Runge-Kutta Feldberg(ERKF(5)) and Continuous explicit Runge-Kutta (CERK) method using shooting method to solve second order boundary value problem which can be reduced to order one.These methods we shall call them as shooting Continuous Explicit Runge-Kutta method, the results are computed using matlab program.
Due to the continuous development in society and the multiplicity of customers' desires and their keeping pace with this development and their search for the quality and durability of the commodity that provides them with the best performance and that meets their needs and desires, all this has led to the consideration of quality as one of the competitive advantages that many industrial companies compete for and which are of interest to customers and are looking for. The research problem showed that the Diyala State Company for Electrical Industries relies on some simple methods and personal experience to monitor the quality of products and does not adopt scientific methods and modern programs. The aim of this research is to desi
... Show More
Ground Penetrating Radar (GPR) is a nondestructive geophysical technique that uses electromagnetic waves to evaluate subsurface information. A GPR unit emits a short pulse of electromagnetic energy and is able to determine the presence or absence of a target by examining the reflected energy from that pulse. GPR is geophysical approach that use band of the radio spectrum. In this research the function of GPR has been summarized as survey different buried objects such as (Iron, Plastic(PVC), Aluminum) in specified depth about (0.5m) using antenna of 250 MHZ, the response of the each object can be recognized as its shapes, this recognition have been performed using image processi |
In the present study, the effect of new cross-section fin geometries on overall thermal/fluid performance had been investigated. The cross-section included the base original geometry of (triangular, square, circular, and elliptical pin fins) by adding exterior extra fins along the sides of the origin fins. The present extra fins include rectangular extra fin of 2 mm (height) and 4 mm (width) and triangular extra fin of 2 mm (base) 4 mm (height). The use of entropy generation minimization method (EGM) allows the combined effect of thermal resistance and pressure drop to be assessed through the simultaneous interaction with the heat sink. A general dimensionless expression for the entropy generation rate is obtained by con
... Show MoreIn this work, polyvinylpyrrolidone (PVP), Multi-walled carbon nanotubes (MWCNTs) nanocomposite was prepared and hybrid with Graphene (Gr) by casting method. The morphological and optical properties were investigated. Fourier Transformer-Infrared (FT-IR) indicates the presence of primary distinctive peaks belonging to vibration groups that describe the prepared samples. Scanning Electron Microscopy (SEM) images showed a uniform dispersion of graphene within the PVP-MWCNT nanocomposite. The results of the optical study show decrease in the energy gap with increasing MWCNT and graphene concentration. The absorption coefficient spectra indicate the presence of two absorption peaks at 282 and 287 nm attributed to the π-π* electronic tr
... Show More