Geotechnical engineers have always been concerned with the stabilization of slopes. For this purpose,
various methods such as retaining walls, piles, and geosynthetics may be used to increase the safety factor of slopes prone to failure. The application of stone columns may also be another potential alternative for slope stabilization. Such columns have normally been used for cohesive soil improvement. Most slope analysis and design is based on deterministic approach i.e a set of single valued design parameter are adopted and a set of single valued factor of safety (FOS) is determined. Usually the FOS is selected in view of the understanding and knowledge of the material parameters, the problem geometry, the method of analysis and the consequences of failure. This results in different FOS obtained by different designers. This inherent variability characteristic dictates that slope stability problem is a probabilistic problem rather than deterministic problem. Furthermore, the FOS approach cannot quantify the probability of failure or level of risk associated with a particular design situation. The objective of this study is to integrate probabilistic approach as a rational means to incorporate uncertainty in the slope stability analysis. The study was made through a hypothetical problem which includes a sensitivity analysis. The methodology is based on Monte Carlo simulation integrated in commercially available computer program SLOPE/W. The output of the analysis is presented as the probability of failure as a measure of the likelihood of the slope failure. Results of this study have verified that the probability of failure is a better measure of slope stability as compared to the factor of safety because it provides a range of value rather than a single value.
The research material was prune plums (
The research material was prune plums (
Organic Permeable Base Transistors (OPBTs) reach a very high transit frequency and large on-state currents. However, for a later commercial application of this technology, a high operational stability is essential as well. Here, the stability of OPBTs during continuous cycling and during base bias stress is discussed. It is observed that the threshold voltage of these transistors shifts toward more positive base voltages if stressed by applying a constant potential to the base electrode for prolonged times. With the help of a 2D device simulation, it is proposed that the observed instabilities are due to charges that are trapped on top of an oxide layer formed around the base electrode. These charges are thermally released after rem
... Show MoreIn this paper a mathematical model that describes the flow of infectious disease in a population is proposed and studied. It is assumed that the disease divided the population into four classes: susceptible individuals (S), vaccinated individuals (V), infected individuals (I) and recover individuals (R). The impact of immigrants, vaccine and external sources of disease, on the dynamics of SVIRS epidemic model is studied. The existence, uniqueness and boundedness of the solution of the model are discussed. The local and global stability of the model is studied. The occurrence of local bifurcation as well as Hopf bifurcation in the model is investigated. Finally the global dynamics of the proposed model is studied numerically.
The k-out-of-n:G (or k/n:G) system structure is a very popular of redundancy in
fault-tolerant systems, with wide applications in so many fields. This paper presents
two states of multi-state k/n:G systems. The first part, we present the definition that
introduced by Al-Neweihi et al [1], where the values are the same with respect
to all system states and we show that there exists an alternative equivalent definition
to Al-Neweihi's definition. In the second part of this paper we give more general
definition proposed by Huang et al [2], where it allows different values with
respect to different system states and we provide there exists an equivalent definition
to Huang's definition when the values are increasing.
In this paper, Bayesian estimator for the parameter and reliability function of inverse Rayleigh distribution (IRD) were obtained Under three types of loss function, namely, square error loss function (SELF), Modified Square error loss function (MSELF) and Precautionary loss function (PLF),taking into consideration the informative and non- informative prior. The performance of such estimators was assessed on the basis of mean square error (MSE) criterion by performing a Monte Carlo simulation technique.
Haemoproteus burhinus is described from the stone curlew, Burhinus oedicnemus saharae (Reichenow) from Al-Attariya, 45 km SE Baghdad city middle of Iraq. It is related to but differs from H. peireci in that it hypertrophied the erythrocyte and the erythrocyte nucleus is always laterally displaced in microgametocytes.
In this research is estimated the function of reliability dynamic of multi state systems and their compounds and for three types of systems (serial, parallel, 2-out-of-3) and about two states (Failure and repair) depending on calculating the structur function allow to describing the behavior of
In this study, the effect of construction joints on the performance of reinforced concrete beams was experimentally investigated. Seven beam specimens, with dimensions of 200×100×1000 mm, were fabricated. The variables were considered including; the location and configuration of the joints. One beam was cast without a joint (Reference specimen), two specimens were fabricated with a one horizontal joint located either at tension, or compression zone. The fourth
beam had two horizontal joints placed at tension, and compression area. The remaining specimens were with one or two inclined joints positioned at the shear span or beam’s mid-span. The specimens were subjected to a monotonic central concentrated loading until the failure. T