This paper provides the result of an investigation to use of crushed clay brick as
aggregates in producing concrete. Eight different crushed clay brick aggregate concretes were
used in this investigation. Compressive strength, splitting tensile strength and pulse velocity of
crushed clay brick aggregates concrete were determined and compare to natural aggregate
concrete. The compressive strength of crushed clay brick aggregates concretes were always
lower than the compressive strength of natural aggregates concrete regardless the age of
concrete, but the crushed clay brick aggregates concrete showed better performance as the age of
concrete increases and average reduction in compressive strength were 33.5% at the age of 7
days but it becomes only 20% at the age of 56 days compared to natural aggregates concrete. The
splitting tensile strength of crushed clay brick aggregates concrete were always lower than
natural aggregate concrete, the reduction in splitting tensile strength of crushed clay brick
aggregates concrete is ranging between 11 and 26% with an average reduction of about 18.5%
compared to natural aggregates concrete. The pulse velocity of crushed clay brick aggregates
concrete were also lower than natural aggregates concrete, the reduction in pulse velocity of
crashed clay brick aggregates concrete is ranging between 6 and 22% with an average reduction
of about 14% compared to natural aggregates concrete.
Current design codes and specifications allow for part of the bonded flexure tension reinforcement to be distributed over an effective flange width when the T-beams' flanges are in tension. This study presents an experimental and numerical investigation on the reinforced concrete flanged section's flexural behavior when reinforcement in the tension flange is laterally distributed. To achieve the goals of the study, numerical analysis using the finite element method was conducted on discretized flanged beam models validated via experimentally tested T-beam specimen. Parametric study was performed to investigate the effect of different parameters on the T-beams flexural behavior. The study revealed that a significant reduction in the
... Show MoreThis study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano Silica. Tap water has been used in mixing 12 of these mixtures, while the other 12 have been mixed using magnetic water. Nano Silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % were used. The results showed that the mixture containing 2.5%NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results showed that the fiber reinforced magnetic reactive powder concrete containing 2.5% NS (FRMRPCCNS) has the higher bulk density, dynamic modulus of elasticity, ultrasonic pulse velocity electrical resistivity and lesser absorption than fiber reinforced
... Show MoreThis paper investigates the experimental response of composite reinforced concrete with GFRP and steel I-sections under limited cycles of repeated load. The practical work included testing four beams. A reference beam, two composite beams with pultruded GFRP I-sections, and a composite beam with a steel I-beam were subjected to repeated loading. The repeated loading test started by loading gradually up to a maximum of 75% of the ultimate static failure load for five loading and unloading cycles. After that, the specimens were reloaded gradually until failure. All test specimens were tested under a three-point load. Experimental results showed that the ductility index increased for the composite beams relative to the refe
... Show MoreFor more than a decade, externally bonded carbon fiber reinforced polymer (CFRP) composites successfully utilized in retrofitting reinforced concrete structural elements. The function of CFRP reinforcement in increasing the ductility of reinforced concrete (RC) beam is essential in such members. Flexural and shear behaviors, ductility, and confinement were the main studied properties that used the CFRP as a strengthening material. However, limited attention has been paid to investigate the energy absorption of torsion strengthening of concrete members, especially two-span concrete beams. Hence, the target of this work is to investigate the effectiveness of CFRP-strengthening technique with regard to energy absorption of two-span RC
... Show MoreStraight tendons in pretensioned members can cause high-tensile stresses in the concrete extreme fibers at end sections because of the absence of the bending stresses due to self-weight and superimposed loads and the dominance of the moment due to prestressing force alone. Accordingly, the concrete tensile stresses at the ends of a member prestressed with straight tendons may limit the service load capacity of the member. It is therefore important to establish limiting zone in the concrete section within which the prestressing force can be applied without causing tension in the extreme concrete fibers. Two practical methods are available to reduce the stresses at the end sections due to the prestressing force. The first method based
... Show MoreОдной из активно развивающихся отраслей лексикологии является неология, объект её изучения - новое слово или неологизм. В задачу неологии входит выявление новых слов и новых значений у уже существующих в языке слов, анализ причин и способов их появления, описание факторов, влияющих на появление нового в лексической системе языка, разработка языковой политики в отношении новых номинаций. Лексикограф
... Show More