In this study, structures damage identification method based on changes in the dynamic characteristics
(frequencies) of the structure are examined, stiffness as well as mass matrices of the curved
(in and out-of-plane vibration) beam elements is formulated using Hamilton's principle. Each node
of both of them possesses seven degrees of freedom including the warping degree of freedom. The
curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory
in 1994. A computer program was developing to carry out free vibration analyses of the curved
beam as well as straight beam. Comparing with the frequencies for other researchers using the general
purpose program MATLAB. Fuzzy logic system (FLS) applied in two stages to calculate the
damage extent and location in simply in and out-of- plane curved beam, the damage deduce by reduction
in stiffness for three levels (20%, 40%, 60%). At the first stage the output faults of the fuzzy system represented by four levels of damage in curved beam (undamaged, slight, moderate, and severe), and at second stage indicate damage location at element with two defuzzification methods (centroid and middle of maximum). The results show that the frequency difference method is efficient to indicate and quantify
damage with accuracy about (99.5%) for slight and moderate damage about (100%) for severe damage. Consequently fuzzy logic performs well for detecting, locating and quantifying damage in curved beam.
Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show MoreIn this work, the impact of different geomagnetic storm events on the plasma-sphere layer (ionosphere layer) over the northern and southern hemisphere regions was investigated during solar cycle 23. To grasp the influence of geomagnetic storms on the behavior and variation of the critical frequency parameter of the F2 ionospheric layer (foF2), five geomagnetic storms (classified as great, severe, and strong), with Disturbance storm time (Dst) values <-100 nT were chosen. Four stations located in different mid-latitude regions in northern and southern hemispheres were designated, the northern stations are: Millstone Hill (42.6° N, 288.50° W) and Rome (41.90° N, 12.50° E) and the southern stations are: Port Stanley (-51.60° S,
... Show MoreTransmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's p
... Show MoreThe combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success.
In this work we proposed a fuzzy wavenet network (FWN), which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images.
&n
... Show MoreSuicidal ideation is one of the most severe mental health issues faced by people all over the world. There are various risk factors involved that can lead to suicide. The most common & critical risk factors among them are depression, anxiety, social isolation and hopelessness. Early detection of these risk factors can help in preventing or reducing the number of suicides. Online social networking platforms like Twitter, Redditt and Facebook are becoming a new way for the people to express themselves freely without worrying about social stigma. This paper presents a methodology and experimentation using social media as a tool to analyse the suicidal ideation in a better way, thus helping in preventing the chances of being the victim o
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show MoreThe efforts embedded in this paper have been devoted to designing, preparing, and testing warm mix asphalt (WMA) mixtures and comparing their behavior against traditional hot mix asphalt mixtures. For WMA preparation, the Sasobit wax additive has been added to a 40/50 asphalt binder with a concentration of 3%. An experimental evaluation has been performed by conducting the Marshall together with volumetric properties, indirect tensile strength, and wheel tracking tests to acquire the tensile strength ratio (TSR), retained stability index (RSI), and rut depth. It was found that the gained benefit of reduction in mixing and compaction temperatures was reversely associated with a noticeable decline in Marshall properties and moisture s
... Show More