Removal of solar brown and direct black dyes by coagulation with two aluminum based
coagulants was conducted. The main objective is to examine the efficiency of these
coagulants in the treatment of dye polluted water discharged from Al-Kadhymia Textile
Company (Baghdad-Iraq). The performance of these coagulants was investigated through
jar test by comparing dye percent removal at different wastewater pH, coagulant dose,
and initial dye concentration. Results show that alum works better than PAC under acidic
media (5-6) and PAC works better under basic media (7-8) in the removal of both solar
brown and direct black dyes. Higher doses of PAC were required to achieve the
maximum removal efficiency under optimum pH conditions for both dyes. It was
observed that under optimum conditions of pH and dose values, PAC was significantly
higher dye removal efficiency than alum for all dyes initial concentrations.
The study involved the effectiveness of Iraqi attapulgite (IQATP) clay as an environmentally friendly material that easily adsorbs brilliant green (BG) dye from water systems and is identified by various complementary methods (e.g., FTIR, SEM‐EDS, XRD, ICP‐OES, pHpzc, and BET), where the result reported that the IQATP specific surface area is 29.15 m2/g. A systematic analysis was selected to evaluate the impact of different effective adsorption performance variables on BG dye decontamination. These variables included IQATP dosage (0.02–0.8 g/L), solution pH (3.05–8.15), contact time (ranging from 2 to 25 min), and initial BG dye concentration from 20 to 80 mg/L. The parameter
... Show MoreThis study was aimed to investigate the response surface methodology (RSM) to evaluate the effects of various experimental conditions on the removal of levofloxacin (LVX) from the aqueous solution by means of electrocoagulation (EC) technique with stainless steel electrodes. The EC process was achieved successfully with the efficiency of LVX removal of 90%. The results obtained from the regression analysis, showed that the data of experiential are better fitted to the polynomial model of second-order with the predicted correlation coefficient (pred. R2) of 0.723, adjusted correlation coefficient (Adj. R2) of 0.907 and correlation coefficient values (R2) of 0.952. This shows that the predicted models and experimental values are in go
... Show MoreThe aim of this study is to utilize the electromembrane extraction (EME) system as a manner for effective removal of zinc from aqueous solutions. A novel and distinctive electrochemical cell design was adopted consisting of two glass chambers, a supported liquid membrane (SLM) housing a polypropylene flat membrane infused with 1-octanol and a carrier. Two electrodes were used, a graphite as anode and a stainless steel as cathode. A comprehensive examination of several influential factors including the choice of carrier, the applied voltage magnitude, the initial pH of the donor solution, and the initial concentration of zinc was performed, all in a concerted effort to ascertain their respective impacts on the efficiency of zinc elim
... Show MoreThe pollution producing from textile industries effluents is growing since the years, due to at discharged lots of it in water without treatment. The resulting effluent is colourful, highly toxic, and poses a significant environmental hazard. This problem can be solved by using enzymic biological treatment, where the Congo red dye was used with concentrations (100,200,300,500) mg /L, pH values (3,4,5,6,7,8), and variable temperatures (25,35,45)°C, the best removal of Congo red (CR) dye under optimum conditions for degradation was at concentration of 100 mg/L, at (pH 6, 25 °C) with efficiency of 99.85 % using the peroxidase enzyme extracted from red radish plant, while the removal percentage decreased when increase dye concentration
... Show MoreThe present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) process for water recovery from electroplating wastewater and study the factors affecting the performance of two membrane processes. Nanofiltration and reverse osmosis membranes are made from polyamide as spiral wound module. The inorganic materials ZnCl2, CuCl2.2H2O, NiCl2.6H2O and CrCl3.6H2O were used as feed solutions. The operating parameters studied were: operating time, feed concentrations for heavy metal ions, operating pressure, feed flow rate, feed temperature and feed pH. The experimental results showed, the permeate concentration increased and water flux decreased with increase in time from 0 to 70 min. The permeate concentrations incre
... Show MoreThe present work aimed to study the efficiency of nanofiltration (NF) and reverseosmosis (RO) process for water recovery from electroplating wastewater and study the factors affecting the performance of two membrane processes. Nanofiltration and reverse osmosismembranes are made from polyamide as spiral wound module. The inorganic materials ZnCl 2 CuCl2 .2H2O, NiCl.2.6H2O and CrCl3.6H2O were used as feed solutions. The operating parametersstudied were: operating time, feed concentrations for heavy metal ions, operating pressure, feed flow rate, feed temperature and feed pH. The experimental results showed, the permeateconcentration increased and water flux decreased with increase in time from 0 to 70 min. Thepermeate concentrations incre
... Show MoreOne of the important units in Sharq Dijla Water Treatment Plant (WTP) first and second extensions are the alum solution preparation and dosing unit. The existing operation of this unit accomplished manually starting from unloading the powder alum in the preparation basin and ending by controlling the alum dosage addition through the dosing pumps to the flash mix chambers. Because of the modern trend of monitoring and control the automatic operation of WTPs due to the great benefits that could be gain from optimum equipment operation, reducing the operating costs and human errors. This study deals with how to transform the conventional operation to an automatic monitoring and controlling system depending on a Programmable
... Show More