In this current work, Purpose; to clearly the fundamental idea for constructing a design and
investigation of spur gear made of composite material its comes from the combination of (high
speeds, low noise, oil-les running, light weight, high strength, and more load capability)
encountered in modern engineering applications of the gear drives, when the usual metallic gear
cannot too overwhelming these combinations.
An analyzing of stresses and deformation under static and dynamic loading for spur gear tooth
by finite element method with isoparametric eight-nodded in total of 200 brick element with 340
nods in three degree of freedom per node was selected for this analysis. This is responsible for the
catastropic failure studying of spur gear made of composite material. Also obtain the natural
frequencies and the mode shape of the composite tooth under (concentrated and or moving on
surface profile) load of one half sinusoidal type impulse for two types of composite materials
(Glasses/Epoxy & Graphite/Epoxy) and they are compared with the mild steel gear values.
The appearances that improve the successfully of composite gear in the weight, stiffness, load
capability, and dynamic behavior respect to the mild steel, which is found that composite materials
may also be thought of as a material for power transmission gearing, from a stress point of view.
In the present study, an attempt has been made to experimentally investigate the flexural performance of ten simply supported reinforced concrete gable roof beams, including solid control specimen (i.e., without openings) and nine beams with web openings of different dimensions and configurations. The nine beams with openings have identical reinforcement details. All beams were monotonically loaded to failure under mid-span loading. The main variables were the number of the created openings, the total area of the created openings, and the inclination angle of the posts between openings. Of interest is the load-carrying capacity, cracking resistance and propagation, deformability, failure mode, and strain development that represent the behav
... Show MoreThe theoretical analysis depends on the Classical Laminated Plate Theory (CLPT) that is based on the Von-K ráman Theory and Kirchhov Hypothesis in the deflection analysis during elastic limit as well as the Hooke's laws of calculation the stresses. New function for boundary condition is used to solve the forth degree of differential equations which depends on variety sources of advanced engineering mathematics. The behavior of composite laminated plates, symmetric and anti-symmetric of cross-ply angle, under out-of-plane loads (uniform distributed loads) with two different boundary conditions are investigated to obtain the central deflection for mid-plane by using the Ritz method. The computer programs is built using Ma
... Show MoreATTAPULGITE clay was modified in this study by the graphene oxide sheets and the clay was diagnosed before and after modification using several techniques (Fourier-transform infrared spectroscopy FT-IR, X-ray powder diffraction XRD, Scanning electron microscope SEM , energy dispersive spectroscopy EDX ) ,The surface of the attapulgite clay (before (Ata) after modification by graphene oxide (Ata-GO) ) was applied to adsorption of the Alizarin dye from its water solutions through the application of several kinetic models (pseudo first-order model , pseudo second -order model , intraparticle diffusion model ),It was found that the practical results follow pseudo second -order model. The process of modification on the surface of the mud has imp
... Show MoreThis work aims to enhance acoustic and thermal insulation properties for polymeric composite by adding nanoclay and rock wool as reinforcement materials with different rations. A polymer blend of (epoxy+ polyester) as matrix materials was used. The Hand lay-up technique was used to manufacture the castings. Epoxy and polyester were mixed at different weight ratios involving (50:50, 60:40, 70:30, 80:20, and 90:10) wt. % of (epoxy: polyester) wt. % respectively. Impact tests for optimum sample (OMR), caustic and thermal insulation tests were performed. Nano clay (Kaolinite) with ratios ( 5 and 7.5% ) wt.% , also hybrid reinforcement materials involving (Kaolite 5 & 7.5 % wt.% + 10% volume fraction of rockwool ) were added as reinforcem
... Show MoreThis paper demonstrates an experimental and numerical study aimed at comparing the influence of openings of different configurations on the flexural behavior of reinforced concrete gable roof beams. The experimental program consisted of testing six simply supported gable beams subjected to mid-point concentrated load. The variable which has been investigated in this work was opening's configuration (quadrilateral or circular) with the same upper and lower chords depth. The results indicate improvement in the beams’ flexural behavior when circular openings were used compared with that of quadrilateral openings, represented by an increase in ultimate load capacity and a decrease in deflection at the service limit. Also, there was an
... Show MoreCritical buckling and natural frequencies behavior of laminated composite thin plates subjected to in-plane uniform load is obtained using classical laminated plate theory (CLPT). Analytical investigation is presented using Ritz- method for eigenvalue problems of buckling load solutions for laminated symmetric and anti-symmetric, angle and cross ply composite plate with different elastic supports along its edges. Equation of motion of the plate was derived using principle of virtual work and solved using modified Fourier displacement function that satisfies general edge conditions. Various numerical investigation were studied to exhibit a convergence and accuracy of the present solution for considering some design parameters such as edge
... Show MoreThe dynamic thermomechanical properties, sealing ability, and voids formation of an experimental obturation hydroxyapatite-reinforced polyethylene (HA/PE) composite/carrier system were investigated and compared with those of a commercial system [GuttaCore (GC)]. The HA/PE system was specifically designed using a melt-extrusion process. The viscoelastic properties of HA/PE were determined using a dynamic thermomechanical analyser. Human single-rooted teeth were endodontically instrumented and obturated using HA/PE or GC systems, and then sealing ability was assessed using a fluid filtration system. In addition, micro-computed tomography (μCT) was used to quantify apparent voids within the root-canal space. The data were statistically analys
... Show MoreThis study discussed the effects of doping with silver (Ag) on the optical and structural properties of
CdO nanoparticles at different concentrations 0, 1, 2, 3, 4, 5 wt% prepared by the precipitation method. The
materials were annealed at 550˚C for 1 h. The structural, topographical, and optical properties were
diagnosed by X-ray diffraction analysis, atomic force instrument, and visible and ultraviolet spectrometers.
The results show that the average diameter of the grains depends on the percentage of added silver to the
material, as the diameter decreased from 88.8 to 59.7 nm, and it was found that the roughness increased from
5.56 to 26.5. When studying the optical properties, it was noted that th
A cantilever beam is made from composite material which is consist of (matrix: polyester) and (particles: Silicon-Carbide) with different volume fraction of particles. A force is applied at the free end of beam with different values. The experimental maximum deflection of beam which occurs at the point of the applied load is recorded. The deflection and slope of beam are analyzed by using FEM modeling. MATLAB paltform is built to assemble the equations, vector and matrix of FEM and solving the unknown variables (deflection and slope) at each node. Also ANSYS platform is used to modeling beam in finite element and solve the problem. The numerical methods are used to compare the results with the theoretical and experimental data. A good ag
... Show More