In this current work, Purpose; to clearly the fundamental idea for constructing a design and
investigation of spur gear made of composite material its comes from the combination of (high
speeds, low noise, oil-les running, light weight, high strength, and more load capability)
encountered in modern engineering applications of the gear drives, when the usual metallic gear
cannot too overwhelming these combinations.
An analyzing of stresses and deformation under static and dynamic loading for spur gear tooth
by finite element method with isoparametric eight-nodded in total of 200 brick element with 340
nods in three degree of freedom per node was selected for this analysis. This is responsible for the
catastropic failure studying of spur gear made of composite material. Also obtain the natural
frequencies and the mode shape of the composite tooth under (concentrated and or moving on
surface profile) load of one half sinusoidal type impulse for two types of composite materials
(Glasses/Epoxy & Graphite/Epoxy) and they are compared with the mild steel gear values.
The appearances that improve the successfully of composite gear in the weight, stiffness, load
capability, and dynamic behavior respect to the mild steel, which is found that composite materials
may also be thought of as a material for power transmission gearing, from a stress point of view.
Naturally available products have been used widely for centuries in handling human disease. The present study aimed to determine the effect of aluminum potassium sulfate addition into the soft liner on tensile strength and peel bond strength. The effect of aluminum potassium sulfate evaluated by two methods, first one include incorporation of KAL (SO4)2 into soft liner monomer in concentration (2%,3% by wt.) while the second method include immersion of soft liner specimens in solution of KAL(SO4)2 in concentration(5%,10% percent) during time periods (0,10 minutes). In conclusions, the results of current study encourage use KAL (SO4)2 within soft liner material
In earthquake engineering problems, uncertainty exists not only in the seismic excitations but also in the structure's parameters. This study investigates the influence of structural geometry, elastic modulus, mass density, and section dimension uncertainty on the stochastic earthquake response of a multi-story moment resisting frame subjected to random ground motion. The North-south component of the Ali Gharbi earthquake in 2012, Iraq, is selected as ground excitation. Using the power spectral density function (PSD), the two-dimensional finite element model of the moment resisting frame's base motion is modified to account for random ground motion. The probabilistic study of the moment resisting frame structure using stochastic fin
... Show MoreThis paper discusses using H2 and H∞ robust control approaches for designing control systems. These approaches are applied to elementary control system designs, and their respective implementation and pros and cons are introduced. The H∞ control synthesis mainly enforces closed-loop stability, covering some physical constraints and limitations. While noise rejection and disturbance attenuation are more naturally expressed in performance optimization, which can represent the H2 control synthesis problem. The paper also applies these two methodologies to multi-plant systems to study the stability and performance of the designed controllers. Simulation results show that the H2 controller tracks a desirable cl
... Show MoreA linear engine generator with a compact double-acting free piston mechanism allows for full integration of the combustion engine and generator, which provides an alternative chemical-to-electrical energy converter with a higher volumetric power density for the electrification of automobiles, trains, and ships. This paper aims to analyse the performance of the integrated engine with alternative permanent magnet linear tubular electrical machine topologies using a coupled dynamic model in Siemens Simcenter software. Two types of alternative generator configurations are compared, namely long translator-short stator and short translator-long stator linear machines. The dynamic models of the linear engine and linear generator, validated
... Show MoreSoft clays are generally characterized by low shear strength, low permeability and high compressibility. An effective method to accelerate consolidation of such soils is to use vertical drains along with vacuum preloading to encourage radial flow of water. In this research numerical modeling of prefabricated vertical drains with vacuum pressure was done to investigate the effect of using vertical drains together with vacuum pressure on the degree of saturation of fully and saturated-unsaturated soft soils. Laboratory experiments were conducted by using a specially-designed large consolidometer cell where a central drain was installed and vacuum pressure was applied. All tests were conducted
... Show MoreIn this research the natural frequency of a cracked simple supported beam (the crack is in many places and in different depths) is investigated analytically, experimentally and numerically by ANSYS program, and the results are compared. The beam is made of iron with dimensions of L*W*H= (0.84*0.02* 0.02m), and density = 7680kg/m3, E=200Gpa. A comparison made between analytical results from ANSYS with experimental results, where the biggest error percentage is about (7.2 %) in crack position (42 cm) and (6 mm) depth. Between Rayleigh method with experimental results the biggest error percentage is about (6.4 %) for the same crack position and depth. From the error percentages it could be concluded that the Rayleigh method gives
... Show MoreThis study aimed to evaluate the effectiveness of a novel concrete-encased column (CE) using small circular steel tubes filled with cementitious grouting material (GFST) as the primary reinforcement instead of traditional steel bars. The research involved three different types of reinforcement: conventional steel bars, concrete-filled steel tubes with 30% of the reinforcement ratio of steel bars, and concrete-filled steel tubes with the same reinforcement ratio as steel bars. Twenty-four circular concrete columns were tested and categorized into six groups based on the type of reinforcement employed. Each group comprised four columns, with one subjected to concentric axial load, two subjected to eccentric axial load (with eccentrici
... Show MoreThe aim of this study is to investigate the existence of some heavy metals (lead, cadmium, chromium) in colored plastic table dishes and study the migration of these metals to the food meals and the affecting factors in migration , such as storage period and food temperature. Six kinds of colored plastic table dishes were collected from Baghdad markets. The heavy metals in table dishes and in the prepared food meals put in them were estimated using atomic absorption spectrophotometer (Shimadzu A5000). The results indicated the existence of lead in all samples (1.61_1.00 mg/ kg) and chromium in three samples (0.85_0.97 mg/ kg) while other samples are free of chromium, and cadmium. Investigating the migration of these metals to food at dif
... Show MoreAbstract
Lightweight materials is used in the sheet metal hydroforming process, because it can be adapted to the manufacturing of complex structural components into a single body with high structural stiffness. Sheet hydroforming has been successfully developed in industry such as in the manufacturing of the components of automotive.The aim of this study is to simulate the experimental results ( such as the amount of pressure required to hydroforming process, stresses, and strains distribution) with results of finite element analyses (FEA) (ANSYS 11) for aluminum alloy (AA5652) sheets with thickness (1.2mm) before heat treatm
... Show More