The present work presents a new experimental study of the enhancement of turbulent
convection heat transfer inside tubes for combined thermal and hydrodynamic entry length of one
popular “turbulator” (twisted tape with width slightly less than internal tube diameter) inserted for
fire tube boilers. Cylindrical combustion chamber was used to burn (1.6 to 7kg/h) fuel oil #2 to
deliver hot gases with ranges of Reynolds number (10500 to 21700), and (11400 to 24150) for both
empty and inserted tube respectively.A uniform wall temperature technique was used by keeping
approximately constant water temperature difference (25ºC) between inlet and exit cooling water in
parallel flow shell and tube heat exchanger. The test tube consisted of smooth carbon steel tube of
(2400mm) long and (52mm) internal diameter. This test tube instrumented to derive local heat
transfer coefficient and local flue gasses static pressure.The experimental results show that for the
same fuel consumption, twisted tape insert with (H/D = 11.15) enhanced the mean Nusselt number
in (75.2%), (68.8%), (49.8%), (40.3%), and (16.7%) for fuel consumption (7kg/h), (6.16kg/h),
(4.5kg/h), (3.24kg/h), and (1.6kg/h) respectively.A set of empirical correlations that permit the
evaluation of the mean Nusselt number (for developing and fully developed region), and average
Nusselt number (for developed region) for empty and inserted tube are generated for engineering
applications.
This paper presents stochastic analysis using the perturbation method to model the structure of a container to verify the distributions of probability of maximum and minimum axial forces reactions in piles. The proposed simulation of a container port terminal under 11 scenarios of load combinations was presented. The probability distributions for live loads are assigned according to the input parameters of simulation data. Part of the load itself is implicitly combined such as vertical live load which includes the weight of equipment and containers and wind load. The structural model was simulated in the software STAAD Pro., while the statistical analyses were performed with MATLAB. The results demonstrated that, the most significant extern
... Show More An experimental and computational study is conducted to analyze the thermal performance of heat sinks and to pick up more profound information in this imperative field in the electronic cooling. One important approach to improve the heat transfer on the air-side of the heat exchanger is to adjust the fin geometry. Experiments are conducted to explore the impact of the changing of diverse operational and geometrical parameters on the heat sink thermal
performance. The working fluid used is air. Operational parameters includes: air Reynolds number (from 23597 to 3848.9) and heat flux (from 3954 to 38357 W/m
2 ). Conformational parameters includes: change the direction of air flow and the area of conduct
charge transfer complex formed by interaction between the p- aminodiphenylamine (PADPA) as electron donor with iodine as electron acceptor in ethanol at 250C as evidenced by color change and absorption. The spectrum obtained from complex PADPA – Iodine shows absorptions bands at 586 nm. All the variables which affected on the stability of complex were studies such as temperature, pH, time and concentration of acceptor. The linearity of the method was observed within a concentration rang (10–165) mg.L-1 and with a correlation coefficient (0.9996), while the molar absorbitivity and sandell sensitivity were (4643.32) L.mol-1.cm-1 and (0.0943) μg.cm-2, respectively. The adsorption of complex PADPA–I2 was studied using adsorbent surfaces
... Show MoreThree-dimensional cavity was investigated numerical in the current study filled with porous medium from a saturated fluid. The problem configuration consists of two insulated bottom and right wall and left vertical wall maintained at constant temperatures at variable locations, using two discretized heaters. The porous cavity fluid motion was represented by the momentum equation generalized model. The present investigation thermophysical parameters included the local thermal equilibrium condition. The isotherms and streamlines was used to examine energy transport and momentum. The meaning of changing parameters on the established average Nusselt number, temperature and velocity distribution are highlighted and discussed.
Chilled ceilings systems offer potential for overall capital savings. The main aim of the present research is to investigate the thermal performance of the indirect contact closed circuit cooling tower, ICCCCT used with chilled ceiling, to gain a deeper knowledge in this important field of engineering which has been traditionally used in various industrial & HVAC systems. To achieve this study, experimental work were implemented for the ICCCCT use with chilled ceiling. In this study the thermal performances of closed wet cooling tower use with chilled ceiling is experimentally and theoretically investigated. Different experimental tests were conducted by varying the controlling parameters to investigate their effects
... Show MoreBackground: Strangles is a highly contagious equine respiratory disease caused by Streptococcus equi subsp. equi. It is a globally significant pathogen and one of the most common infectious agents in horses. In Iraq, no sequencing data on this pathogen are available, and only two molecular studies have been published to date. This study provides preliminary insights into strain diversity and provides a foundation for future large-scale investigations. Aim: This study aimed to investigate the molecular characteristics, identify SeM gene alleles, and perform a phylogenetic analysis of S. equi isolates from horses in Baghdad, Iraq. Methods: We analyzed 59 Streptococcus spp. isolates previously obtained from equine clinical sample
... Show More